Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits

被引:4
|
作者
Huaraca, Walter [1 ]
Mendoza, Valentin [2 ]
机构
[1] Univ Fed Vicosa, DMA, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Itajuba, Inst Matemat & Comput, BR-37500903 Itajuba, MG, Brazil
关键词
Homoclinic orbits; Chaos; Pruning theory; SYMBOLIC DYNAMICS; GENERATING PARTITIONS; TEMPLATES; SYSTEM;
D O I
10.1016/j.physd.2015.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and periodic orbits. The main tool is the pruning method, which is used for finding a hyperbolic map, obtained uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set under consideration. Then we will show applications related to transport phenomena and to the problem of determining the orbits structure coexisting with a finite number of periodic orbits arising from the bouncing ball model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [41] Diverting homoclinic chaos in a class of piecewise smooth oscillators to stable periodic orbits using small parametrical perturbations
    Li, Huaqing
    Liao, Xiaofeng
    Huang, Junjian
    Chen, Guo
    Dong, Zhaoyang
    Huang, Tingwen
    NEUROCOMPUTING, 2015, 149 : 1587 - 1595
  • [42] Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
    Battelli, F.
    Feckan, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) : 1962 - 1975
  • [43] LOCALIZED CHAOS ON PERIODIC-ORBITS
    SINGH, R
    MARU, VM
    MOHARIR, PS
    CURRENT SCIENCE, 1995, 68 (05): : 497 - 500
  • [44] On spatial periodic orbits and spatial chaos
    Chen, GR
    Liu, ST
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 935 - 941
  • [45] Transversal homoclinic orbits and chaos for partial functional differential equations
    Luo, Guangping
    Zhu, Changrong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : 6254 - 6264
  • [46] Chaos computing in terms of periodic orbits
    Kia, Behnam
    Spano, Mark L.
    Ditto, William L.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [47] TOPOLOGICAL MODEL OF HOMOCLINIC CHAOS IN A GLOW-DISCHARGE
    BRAUN, T
    CORREIA, RRB
    ALTMANN, N
    PHYSICAL REVIEW E, 1995, 51 (05): : 4165 - 4168
  • [48] Homoclinic orbits of the doubly periodic Davey-Stewartson equation
    ZHANG Jun 1*
    2. Department of Mathematics
    ProgressinNaturalScience, 2004, (11) : 95 - 96
  • [49] BIFURCATION OF PERIODIC-ORBITS FROM A SYMMETRICAL HOMOCLINIC CYCLE
    SCHEEL, A
    CHOSSAT, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (01): : 49 - 54
  • [50] Homoclinic orbits for an infinite dimensional Hamiltonian system with periodic potential
    Zhang J.
    Lv D.
    Tang Y.
    Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 133 - 146