Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits

被引:4
|
作者
Huaraca, Walter [1 ]
Mendoza, Valentin [2 ]
机构
[1] Univ Fed Vicosa, DMA, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Itajuba, Inst Matemat & Comput, BR-37500903 Itajuba, MG, Brazil
关键词
Homoclinic orbits; Chaos; Pruning theory; SYMBOLIC DYNAMICS; GENERATING PARTITIONS; TEMPLATES; SYSTEM;
D O I
10.1016/j.physd.2015.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and periodic orbits. The main tool is the pruning method, which is used for finding a hyperbolic map, obtained uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set under consideration. Then we will show applications related to transport phenomena and to the problem of determining the orbits structure coexisting with a finite number of periodic orbits arising from the bouncing ball model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [21] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [22] On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system
    Guo, Siyu
    Luo, Albert C. J.
    CHAOS, 2021, 31 (04)
  • [23] Topological imprint for periodic orbits
    San Martin, Jesus
    Jose Moscoso, Ma
    Gonzalez Gomez, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (02)
  • [24] Plateau of α-function and c-minimal homoclinic orbits
    Xia Li
    Xiaojun Cui
    Science in China Series A, 2006, 49 : 922 - 931
  • [25] Plateau of α-function and c-minimal homoclinic orbits
    LI Xia & CUI Xiaojun Department of Mathematics
    Mathematical Research Institute
    ScienceinChina(SeriesA:Mathematics), 2006, (07) : 922 - 931
  • [26] Existence of homoclinic solutions to periodic orbits in a center manifold
    Zelati, VC
    Macrì, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 202 (01) : 158 - 182
  • [27] On the effect of invisibility of stable periodic orbits at homoclinic bifurcations
    Gonchenko, S. V.
    Ovsyannikov, I. I.
    Turaev, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (13) : 1115 - 1122
  • [28] Stability of minimal periodic orbits
    Dullin, HR
    Meiss, JD
    PHYSICS LETTERS A, 1998, 247 (03) : 227 - 234
  • [29] Stability of minimal periodic orbits
    Dullin, Holger R.
    Meiss, James D.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247 (03): : 227 - 234
  • [30] Symmetric Homoclinic Orbits at the Periodic Hamiltonian Hopf Bifurcation
    Lerman, Lev
    Markova, Anna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):