Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits

被引:4
|
作者
Huaraca, Walter [1 ]
Mendoza, Valentin [2 ]
机构
[1] Univ Fed Vicosa, DMA, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Itajuba, Inst Matemat & Comput, BR-37500903 Itajuba, MG, Brazil
关键词
Homoclinic orbits; Chaos; Pruning theory; SYMBOLIC DYNAMICS; GENERATING PARTITIONS; TEMPLATES; SYSTEM;
D O I
10.1016/j.physd.2015.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we explain how to find the minimal topological chaos relative to finite set of homoclinic and periodic orbits. The main tool is the pruning method, which is used for finding a hyperbolic map, obtained uncrossing pieces of the invariant manifolds, whose basic set contains all orbits forced by the finite set under consideration. Then we will show applications related to transport phenomena and to the problem of determining the orbits structure coexisting with a finite number of periodic orbits arising from the bouncing ball model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条