Error estimation for Arnoldi-based model order reduction of MEMS

被引:0
作者
Bechtold, T [1 ]
Rudnyi, EB [1 ]
Korvink, JG [1 ]
机构
[1] Univ Freiburg, IMTEK, D-79110 Freiburg, Germany
来源
NSTI NANOTECH 2004, VOL 2, TECHNICAL PROCEEDINGS | 2004年
关键词
error estimate; model order reduction; Arnoldi algorithm; convergence; Hankel singular values;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present two different, heuristic error estimates for the Pade-type approximation of transfer functions via an Arnoldi algorithm. We first suggest a convergence criterion between two successive reduced models of the order r and r + I. We further propose to use the solution of the Lyapunov equations for reduced-order systems as a stop-criterion during iterative model order reduction.
引用
收藏
页码:430 / 433
页数:4
相关论文
共 12 条
[1]  
Bai Z., 1998, Electronic Transaction on Numerical Analysis, V7, P1
[2]   Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J].
Bai, ZJ .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :9-44
[3]  
Bechtold T, 2003, IEICE T ELECTRON, VE86C, P459
[4]  
GRIMM E, 1997, THESIS U ILLINOIS UR
[5]  
Hinrichsen D., 1990, Automatisierungstechnik, V38, P416
[6]   OBLIQUE PROJECTION METHODS FOR LARGE-SCALE MODEL-REDUCTION [J].
JAIMOUKHA, IM ;
KASENALLY, EM .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (02) :602-627
[7]   Generating nearly optimally compact models from Krylov-subspace based reduced-order models [J].
Kamon, M ;
Wang, F ;
White, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (04) :239-248
[8]   Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case [J].
Penzl, T .
SYSTEMS & CONTROL LETTERS, 2000, 40 (02) :139-144
[9]  
Rossi C., 2002, SENSORS UPDATE, V10, P257, DOI [DOI 10.1002/1616-8984(200201)10:1<257::AID-SEUP257>3.0.CO
[10]  
2-2, 10.1002/1616-8984(200201)10:13.0.CO