Branch and bound method for sensor scheduling in discrete time

被引:21
作者
Feng, Z. G. [1 ]
Teo, K. L.
Zhao, Y.
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Bentley, WA 6102, Australia
关键词
a priori estimate; branch and bound; positive semi-definite matrix; sensor scheduling;
D O I
10.3934/jimo.2005.1.499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider the question of sensor scheduling in discrete time. The basic problem is to design a linear filter whose output provides an unbiased minimum variance estimate of a signal process whose noisy measurements from multiple sensors are available for input to the filter. The problem is to select one source (sensor data) dynamically so as to minimize estimation errors. We formulate the problem as an optimal control problem. By analyzing the positive semi-definite property of the error covariance matrix, we develop a branch and bound method to calculate the optimal scheduling strategy and give a numerical result for interpretation.
引用
收藏
页码:499 / 512
页数:14
相关论文
共 17 条
[1]  
AHMED NU, 1999, LINEAR NONLINEAR FIL
[2]   OPTIMAL SENSOR SCHEDULING IN NONLINEAR FILTERING OF DIFFUSION-PROCESSES [J].
BARAS, JS ;
BENSOUSSAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :786-813
[3]   On a decentralized active sensing strategy using mobile sensor platforms in a network [J].
Chung, TH ;
Gupta, V ;
Burdick, JW ;
Murray, RM .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :1914-1919
[4]  
Feng ZG, 2006, DISCRETE CONT DYN-A, V14, P483
[5]  
Gupta V, 2004, 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P825
[6]  
GUPTA V, 2004, UNPUB STOCHASTIC SEN
[7]  
Jazwinski A.H., 2007, STOCHASTIC PROCESSES
[8]   A sensor selection method considering communication delays [J].
Kagami, S ;
Ishikawa, M .
2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, :206-211
[9]   Sensor scheduling in continuous time [J].
Lee, HWJ ;
Teo, KL ;
Lim, AEB .
AUTOMATICA, 2001, 37 (12) :2017-2023
[10]   Control parametrization enhancing technique for optimal discrete-valued control problems [J].
Lee, HWJ ;
Teo, KL ;
Rehbock, V ;
Jennings, LS .
AUTOMATICA, 1999, 35 (08) :1401-1407