Chondrogenic Priming of Human Bone Marrow Stromal Cells: A Better Route to Bone Repair?

被引:117
作者
Farrell, Eric [2 ]
van der Jagt, Olav P.
Koevoet, Wendy [2 ]
Kops, Nicole
van Manen, Christiaan J. [3 ]
Hellingman, Catharine A. [2 ]
Jahr, Holger
O'Brien, Fergal J. [4 ]
Verhaar, Jan A. N.
Weinans, Harrie
van Osch, Gerjo J. V. M. [1 ,2 ]
机构
[1] Univ Med Ctr Rotterdam, Erasmus MC, Connect Tissue Cells & Repair Grp, Dept Orthopaed, NL-3015 GE Rotterdam, Netherlands
[2] Univ Med Ctr Rotterdam, Erasmus MC, Dept Otorhinolaryngol, NL-3015 GE Rotterdam, Netherlands
[3] Univ Med Ctr Rotterdam, Erasmus MC, Dept Surg Traumatol, NL-3015 GE Rotterdam, Netherlands
[4] Royal Coll Surgeons Ireland, Dept Anat, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
MESENCHYMAL STEM-CELLS; ENDOTHELIAL GROWTH-FACTOR; VITRO CARTILAGE FORMATION; COLLAGEN-GAG SCAFFOLDS; IN-VITRO; CHEMOTACTIC MIGRATION; EXTRACELLULAR-MATRIX; SKELETAL DEVELOPMENT; GENE-EXPRESSION; TISSUE;
D O I
10.1089/ten.tec.2008.0297
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The use of bioengineered cell constructs for the treatment of bone defects has received much attention of late. Often, bone marrow stromal cells (BMSCs) are used that are in vitro-stimulated toward the osteogenic lineage, aiming at intramembranous bone formation. The success of this approach has been disappointing. A major concern with these constructs is core degradation and necrosis caused by lack of vascularization. We hypothesized that stimulation of cells toward the endochondral ossification process would be more successful. In this study, we tested how in vitro priming of human BMSCs (hBMSCs) along osteogenic and chondrogenic lineages influences survival and osteogenesis in vivo. Scaffolds that were pre-cultured on chondrogenic culture medium showed collagen type II and collagen type X production. Moreover, vessel ingrowth was observed. Priming along the osteogenic lineage led to a mineralized matrix of poor quality, with few surviving cells and no vascularization. We further characterized this process in vitro using pellet cultures. In vitro, pellets cultured in chondrogenic medium showed progressive production of collagen type II and collagen type X. In the culture medium of these chondrogenic cultured pellets, vascular endothelial growth factor (VEGF) release was observed at days 14, 21, and 35. When pellets were switched to culture medium containing beta-glycerophosphate, independent of the presence or absence of transforming growth factor beta (TGF-beta), mineralization was observed with a concomitant reduction in VEGF and matrix metalloproteinase (MMP) release. By showing that VEGF and MMPs are produced in chondrogenically differentiated hBMSCs in vitro, we demonstrated that these cells produce factors that are known to be important for the induction of vascularization of the matrix. Inducing mineralization in this endochondral process does, however, severely diminish these capacities. Taken together, these data suggest that optimizing chondrogenic priming of hBMSCs may further improve vessel invasion in bioengineered constructs, thus leading to an alternative and superior approach to bone repair.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 44 条
[1]   Physiological death of hypertrophic chondrocytes [J].
Ahmed, Y. A. ;
Tatarczuch, L. ;
Pagel, C. N. ;
Davies, H. M. S. ;
Mirams, M. ;
Mackie, E. J. .
OSTEOARTHRITIS AND CARTILAGE, 2007, 15 (05) :575-586
[2]   Expression patterns of matrix metalloproteinases and vascular endothelial growth factor during epiphyseal ossification [J].
Alvarez, J ;
Costales, L ;
Serra, R ;
Balbín, M ;
López, JM .
JOURNAL OF BONE AND MINERAL RESEARCH, 2005, 20 (06) :1011-1021
[3]   TGF-BETA-1 PREVENTS HYPERTROPHY OF EPIPHYSEAL CHONDROCYTES - REGULATION OF GENE-EXPRESSION FOR CARTILAGE MATRIX PROTEINS AND METALLOPROTEASES [J].
BALLOCK, RT ;
HEYDEMANN, A ;
WAKEFIELD, LM ;
FLANDERS, KC ;
ROBERTS, AB ;
SPORN, MB .
DEVELOPMENTAL BIOLOGY, 1993, 158 (02) :414-429
[4]   Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification during Skeletal Regeneration [J].
Behonick, Danielle J. ;
Xing, Zhiqing ;
Lieu, Shirley ;
Buckley, Jenni M. ;
Lotz, Jeffrey C. ;
Marcucio, Ralph S. ;
Werb, Zena ;
Miclau, Theodore ;
Colnot, Celine .
PLOS ONE, 2007, 2 (11)
[5]   Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone: Potential roles in skeletal development [J].
Bord, S ;
Horner, A ;
Hembry, RM ;
Compston, JE .
BONE, 1998, 23 (01) :7-12
[6]   THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE [J].
BULSTRA, SK ;
DRUKKER, J ;
KUIJER, R ;
BUURMAN, WA ;
VANDERLINDEN, AJ .
BIOTECHNIC & HISTOCHEMISTRY, 1993, 68 (01) :20-&
[7]  
D'Angelo M, 2000, J CELL BIOCHEM, V77, P678, DOI 10.1002/(SICI)1097-4644(20000615)77:4<678::AID-JCB15>3.0.CO
[8]  
2-P
[9]   Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study [J].
de Mos, Marieke ;
Koevoet, Wendy J. L. M. ;
Jahr, Holger ;
Verstegen, Monique M. A. ;
Heijboer, Marinus P. ;
Kops, Nicole ;
Van Leeuwen, Johannes P. T. M. ;
Weinans, Harrie ;
Verhaar, Jan A. N. ;
van Osch, Gerjo J. V. M. .
BMC MUSCULOSKELETAL DISORDERS, 2007, 8
[10]   A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes [J].
Farrell, E ;
O'Brien, FJ ;
Doyle, P ;
Fischer, J ;
Yannas, I ;
Harley, BA ;
O'Connell, B ;
Prendergast, PJ ;
Campbell, VA .
TISSUE ENGINEERING, 2006, 12 (03) :459-468