Lungs nodule detection framework from computed tomography images using support vector machine

被引:75
作者
Khan, Sajid A. [1 ,2 ]
Nazir, Muhammad [3 ]
Khan, Muhammad A. [3 ]
Saba, Tanzila [4 ]
Javed, Kashif [5 ]
Rehman, Amjad [6 ]
Akram, Tallha [7 ]
Awais, Muhammad [7 ]
机构
[1] Shaheed Zulfikar Ali Bhutto Inst Sci & Technol, Dept Comp Sci, Islamabad, Pakistan
[2] Fdn Univ, Dept Software Engn, Islamabad, Pakistan
[3] HITEC Univ, Dept CS & E, Taxila Cantonment, Pakistan
[4] Prince Sultan Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
[5] SMME NUST, Dept Robot, Islamabad, Pakistan
[6] Al Yamamah Univ, Coll Business Adm, Riyadh, Saudi Arabia
[7] COMSATS Univ Islamabad, Dept EE, Wah Campus, Islamabad, Pakistan
关键词
computed tomography; feature selection; lungs segmentation; pulmonary nodules; wavelet features; SKIN-LESION DETECTION; PULMONARY NODULES; AUTOMATIC DETECTION; FEATURES SELECTION; HYBRID FEATURES; NEURAL-NETWORKS; CLASSIFICATION; CT; SEGMENTATION; RECOGNITION;
D O I
10.1002/jemt.23275
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The emergence of cloud infrastructure has the potential to provide significant benefits in a variety of areas in the medical imaging field. The driving force behind the extensive use of cloud infrastructure for medical image processing is the exponential increase in the size of computed tomography (CT) and magnetic resonance imaging (MRI) data. The size of a single CT/MRI image has increased manifold since the inception of these imagery techniques. This demand for the introduction of effective and efficient frameworks for extracting relevant and most suitable information (features) from these sizeable images. As early detection of lungs cancer can significantly increase the chances of survival of a lung scanner patient, an effective and efficient nodule detection system can play a vital role. In this article, we have proposed a novel classification framework for lungs nodule classification with less false positive rates (FPRs), high accuracy, sensitivity rate, less computationally expensive and uses a small set of features while preserving edge and texture information. The proposed framework comprises multiple phases that include image contrast enhancement, segmentation, feature extraction, followed by an employment of these features for training and testing of a selected classifier. Image preprocessing and feature selection being the primary steps-playing their vital role in achieving improved classification accuracy. We have empirically tested the efficacy of our technique by utilizing the well-known Lungs Image Consortium Database dataset. The results prove that the technique is highly effective for reducing FPRs with an impressive sensitivity rate of 97.45%.
引用
收藏
页码:1256 / 1266
页数:11
相关论文
共 60 条
[1]   Plasmodium species aware based quantification of malaria parasitemia in light microscopy thin blood smear [J].
Abbas, Naveed ;
Saba, Tanzila ;
Rehman, Amjad ;
Mehmood, Zahid ;
Javaid, Nadeem ;
Tahir, Muhammad ;
Khan, Naseer Ullah ;
Ahmed, Khawaja Tehseen ;
Shah, Roaider .
MICROSCOPY RESEARCH AND TECHNIQUE, 2019, 82 (07) :1198-1214
[2]   Plasmodium life cycle stage classification based quantification of malaria parasitaemia in thin blood smears [J].
Abbas, Naveed ;
Saba, Tanzila ;
Rehman, Amjad ;
Mehmood, Zahid ;
Kolivand, Hoshang ;
Uddin, Mueen ;
Anjum, Adeel .
MICROSCOPY RESEARCH AND TECHNIQUE, 2019, 82 (03) :283-295
[3]   Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears [J].
Abbas, Naveed ;
Saba, Tanzila ;
Mohamad, Dzulkifli ;
Rehman, Amjad ;
Almazyad, Abdulaziz S. ;
Al-Ghamdi, Jarallah Saleh .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (03) :803-818
[4]   Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals [J].
Adam, Muhammad ;
Oh, Shu Lih ;
Sudarshan, Vidya K. ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Tan, Ru San ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :133-143
[5]   Pulmonary Nodules Detection and Classification Using Hybrid Features from Computerized Tomographic Images [J].
Akram, Sheeraz ;
Javed, Muhammad Younus ;
Akram, M. Usman ;
Qamar, Usman ;
Hassan, Ali .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (01) :252-259
[6]  
Akram T., 2018, J AMB INTEL HUM COMP, P1, DOI [10.1007/s12652-018-1051-5, DOI 10.1007/S12652-018-1051-5]
[7]  
[Anonymous], 2018, NEURAL COMPUT APPL
[8]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[9]  
Arulmurugan R, 2018, L N COMPUT VIS BIOME, V28, P103, DOI 10.1007/978-3-319-71767-8_9
[10]   Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans [J].
Chen, Hui ;
Zhang, Jing ;
Xu, Yan ;
Chen, Budong ;
Zhang, Kuan .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (13) :11503-11509