Hanatoxin (HaTx) binds to multiple sites on the surface of the drk1 voltage-gated K+ channel and modifies channel gating. We set out to identify channel residues that contribute to form these HaTx binding sites. Chimeras constructed using the drk1 and shaker K+ channels suggest that the S3-S4 linker may contain influential residues. Alanine scanning mutagenesis of the region extending from the C terminal end of S3 through S4 identified a number of residues that likely contribute to form the HaTx binding sites. The pore blocker Agitoxin(2) and the gating modifier HaTx can simultaneously bind to individual K+ channels. These results suggest that residues near the outer edges of S3 and S4 form the HaTx binding sites and are eccentrically located at least 15 Angstrom from the central pore axis on the surface of voltage-gated K+ channels.