Variable selection in partial linear regression with functional covariate

被引:31
作者
Aneiros, G. [1 ]
Ferraty, F. [2 ]
Vieu, P. [2 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna, Spain
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
关键词
functional data; highly increasing dimension; partially linear modelling; sparse model; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; ESTIMATORS; MODELS;
D O I
10.1080/02331888.2014.998675
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of variable selection is considered in high-dimensional partial linear regression under some model allowing for possibly functional variable. The procedure studied is that of nonconcave-penalized least squares. It is shown the existence of a n/s(n)-consistent estimator for the vector of p(n) linear parameters in the model, even when p(n) tends to as the sample size n increases (s(n) denotes the number of influential variables). An oracle property is also obtained for the variable selection method, and the nonparametric rate of convergence is stated for the estimator of the nonlinear functional component of the model. Finally, a simulation study illustrates the finite sample size performance of our procedure.
引用
收藏
页码:1322 / 1347
页数:26
相关论文
共 30 条
[1]  
Aneiros G, 2011, CONTRIB STAT, P17
[2]   Nonparametric time series prediction:: A semi-functional partial linear modeling [J].
Aneiros-Perez, German ;
Vieu, Philippe .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (05) :834-857
[3]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[4]  
Bühlmann P, 2008, ANN STAT, V36, P1534, DOI 10.1214/07-AOS0316A
[5]   Rejoinder:: The Dantzig selector:: Statistical estimation when p is much larger than n [J].
Candes, Emmanuel ;
Tao, Terence .
ANNALS OF STATISTICS, 2007, 35 (06) :2392-2404
[6]   DEFINING PROBABILITY DENSITY FOR A DISTRIBUTION OF RANDOM FUNCTIONS [J].
Delaigle, Aurore ;
Hall, Peter .
ANNALS OF STATISTICS, 2010, 38 (02) :1171-1193
[7]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[8]  
Fan J., 1997, J ITALIAN STAT ASS, V6, P131, DOI DOI 10.1007/BF03178906
[9]   Nonconcave Penalized Likelihood With NP-Dimensionality [J].
Fan, Jianqing ;
Lv, Jinchi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) :5467-5484
[10]   Nonconcave penalized likelihood with a diverging number of parameters [J].
Fan, JQ ;
Peng, H .
ANNALS OF STATISTICS, 2004, 32 (03) :928-961