A STUDY ON THE QUASI-CONTINUUM APPROXIMATIONS OF A ONE-DIMENSIONAL FRACTURE MODEL

被引:3
|
作者
Li, Xiantao [1 ]
Ming, Pingbing [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2014年 / 12卷 / 03期
关键词
quasi-continuum methods; bifurcation analysis; ghost force; lattice fracture model; STABILITY;
D O I
10.1137/130939547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study three quasi-continuum approximations of a lattice model for crack propagation. The influence of the approximation on the bifurcation patterns is investigated. The estimate of the modeling error is applicable to near and beyond bifurcation points, which enables us to evaluate the approximation over a finite range of loading and multiple mechanical equilibria.
引用
收藏
页码:1379 / 1400
页数:22
相关论文
共 50 条
  • [1] ANALYSIS OF A ONE-DIMENSIONAL NONLOCAL QUASI-CONTINUUM METHOD
    Ming, Pingbing
    Yang, Jerry Zhijian
    MULTISCALE MODELING & SIMULATION, 2009, 7 (04): : 1838 - 1875
  • [3] COHERENCE IN THE QUASI-CONTINUUM MODEL
    SHORE, BW
    CHEMICAL PHYSICS LETTERS, 1983, 99 (03) : 240 - 243
  • [4] Quasi-continuum approximations for travelling kinks in diatomic lattices
    Tew, RB
    Wattis, JAD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36): : 7163 - 7180
  • [5] ANALYSIS OF ENERGY-BASED BLENDED QUASI-CONTINUUM APPROXIMATIONS
    Van Koten, Brian
    Luskin, Mitchell
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 2182 - 2209
  • [6] Winter model in the quasi-continuum limit
    Aglietti, U. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (06):
  • [7] Study of band mixing in the rotational quasi-continuum
    Bracco, A
    Bosetti, P
    Leoni, S
    Frattini, S
    Vigezzi, E
    Dossing, T
    Herskind, B
    Matsuo, M
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 38: 4(PI) HIGH RESOLUTION GAMMA RAY SPECTROSCOPY AND NUCLEAR STRUCTURE, 1997, 38 : 185 - 194
  • [8] DYNAMICAL MODEL OF ONE-DIMENSIONAL GRANULAR CONTINUUM
    KREMER, EB
    FIDLIN, AJ
    DOKLADY AKADEMII NAUK SSSR, 1989, 309 (04): : 801 - 804
  • [9] Continuum model of a one-dimensional lattice of metamaterials
    Zhou, Yahong
    Wei, Peijun
    Tang, Qiheng
    ACTA MECHANICA, 2016, 227 (08) : 2361 - 2376
  • [10] A one-dimensional continuum model for ferroelectric ceramics
    Kim, SJ
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2003, 22 (03) : 423 - 432