The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation

被引:32
作者
Bobylev, AV [1 ]
Cercignani, C
机构
[1] Karlstad Univ, Div Engn Sci Phys & Math, Karlstad, Sweden
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
关键词
D O I
10.1016/S0893-9659(02)00046-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the Laplace transform F(p) of a function f(x) has no poles but is singular only on the real negative semiaxis because of a cut required to make it single-valued, the inverse transform f(x) can easily be computed by means of the integral of a real-valued function. This result is applied to the calculation of a class of exact eternal solutions of the Boltzmann equation, recently found by the authors. The new approach makes it easier to prove that these solutions are positive, as well as to study their asymptotics. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:807 / 813
页数:7
相关论文
共 12 条
[1]   ON A CLASS OF SOLUTIONS OF THE KROOK-TJON-WU MODEL OF THE BOLTZMANN-EQUATION [J].
BARNSLEY, M ;
CORNILLE, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1176-1193
[2]  
BOBYLEV AV, 1976, DOKL AKAD NAUK SSSR+, V231, P571
[3]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1296
[4]  
BOBYLEV AV, UNPUB J STAT PHYS
[5]  
BOBYLEV AV, 1984, TEOR MAT FIZ, V60, P280
[6]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[7]   NON-LINEAR MODEL BOLTZMANN EQUATIONS AND EXACT-SOLUTIONS [J].
ERNST, MH .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 78 (01) :1-171
[8]  
Feller W., 1966, INTRO PROBABILITY TH, VI
[9]   FORMATION OF MAXWELLIAN TAILS [J].
KROOK, M ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1976, 36 (19) :1107-1109
[10]  
Krupp R.S., 1967, THESIS MIT CAMBRIDGE