Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

被引:251
作者
Ding, Zhenyang [1 ,2 ,3 ]
Wang, Chenhuan [1 ,2 ,3 ]
Liu, Kun [1 ,2 ,3 ]
Jiang, Junfeng [1 ,2 ,3 ]
Yang, Di [1 ,2 ,3 ]
Pan, Guanyi [1 ]
Pu, Zelin [1 ]
Liu, Tiegen [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[2] Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Inst Opt Fiber Sensing, Tianjin Opt Fiber Sensing Engn Ctr, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
optical frequency domain reflectometry (OFDR); distributed optical fiber sensors; Rayleigh scattering; optical fiber sensors; LASER COHERENCE LENGTH; SINGLE-MODE FIBER; RAYLEIGH BACKSCATTERING; SPATIAL-RESOLUTION; TEMPERATURE-MEASUREMENT; FMCW REFLECTOMETRY; MEASUREMENT RANGE; INTRUSION SENSOR; OFDR; COMPENSATION;
D O I
10.3390/s18041072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
引用
收藏
页数:31
相关论文
共 76 条
[61]  
Sang A.K., 2007, P 2007 QUANT EL LAS, P1
[62]   Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring [J].
Schenato, Luca ;
Aneesh, Rajendran ;
Palmieri, Luca ;
Galtarossa, Andrea ;
Pasuto, Alessandro .
OPTICS AND LASER TECHNOLOGY, 2016, 82 :57-62
[63]   Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry [J].
Shiloh, Lihi ;
Eyal, Avishay .
OPTICS EXPRESS, 2015, 23 (04) :4296-4306
[64]   High resolution optical frequency domain reflectometry for characterization of components and assemblies [J].
Soller, BJ ;
Gifford, DK ;
Wolfe, MS ;
Froggatt, ME .
OPTICS EXPRESS, 2005, 13 (02) :666-674
[65]   Long-Range High Spatial Resolution Distributed Temperature and Strain Sensing Based on Optical Frequency-Domain Reflectometry [J].
Song, Jia ;
Li, Wenhai ;
Lu, Ping ;
Xu, Yanping ;
Chen, Liang ;
Bao, Xiaoyi .
IEEE PHOTONICS JOURNAL, 2014, 6 (03)
[66]  
Steinberg I., 2015, P 24 INT C OPT FIBR
[67]   Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range [J].
Tomashuk, Alexander L. ;
Grekov, Mikhail V. ;
Vasiliev, Sergei A. ;
Svetukhin, Vyacheslav V. .
OPTICS EXPRESS, 2014, 22 (14) :16778-16783
[68]   PHASE NOISE CONSIDERATIONS IN COHERENT OPTICAL FMCW REFLECTOMETRY [J].
VENKATESH, S ;
SORIN, WV .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1993, 11 (10) :1694-1700
[69]   Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography [J].
Vergnole, Sebastien ;
Levesque, Daniel ;
Lamouche, Guy .
OPTICS EXPRESS, 2010, 18 (10) :10446-10461
[70]   On the characterization of optical fiber network components with optical frequency domain reflectometry [J].
vonderWeid, JP ;
Passy, R ;
Mussi, G ;
Gisin, N .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (07) :1131-1141