Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction

被引:138
作者
Gunasooriya, G. T. Kasun Kalhara [1 ]
Norskov, Jens K. [1 ]
机构
[1] Tech Univ Denmark, Catalysis Theory Ctr, Dept Phys, DK-2800 Lyngby, Denmark
关键词
TOTAL-ENERGY CALCULATIONS; REDUCTION; ELECTROCHEMISTRY; ELECTROCATALYSTS; EFFICIENCY; CATALYSIS; SURFACES; INSIGHTS; DESIGN;
D O I
10.1021/acsenergylett.0c02030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The discovery of acid-stable, active, and affordable electrocatalysts for the oxygen evolution reaction (OER) is crucial for the advancement of energy conversion and storage technologies to achieve a sustainable energy future. To date, the best performing electrocatalysts for OER in acidic solutions, IrO2 and RuO2, are expensive and scarce. Herein, we develop a systematic theoretical framework to investigate the OER activity performance of diverse and complex acid-stable oxides. By determining the most stable oxide surfaces, accounting for realistic surface coverages under OER conditions, and using theoretical OER overpotential as an activity descriptor, we identified Co(SbO3)(2), CoSbO4, Ni(SbO3)(2), Fe(SbO3)(2), FeSbO4, FeAg(MoO4)(2), MoWO6, and Ti(WO4)(2) as promising materials, some of which have already been experimentally found to have good OER performance, and some are new for experimental validation, thus expanding the chemical space for efficient OER materials. On the basis of the activity analysis, we further discuss strategies to improve the OER catalytic activity and the remaining challenges.
引用
收藏
页码:3778 / 3787
页数:10
相关论文
共 37 条
[1]   Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS [J].
Abbott, Daniel F. ;
Lebedev, Dmitry ;
Waltar, Kay ;
Povia, Mauro ;
Nachtegaal, Maarten ;
Fabbri, Emiliana ;
Coperet, Christophe ;
Schmidt, Thomas J. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6591-6604
[2]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15
[3]   Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides [J].
Back, Seoin ;
Tran, Kevin ;
Ulissi, Zachary W. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) :38256-38265
[4]   Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning [J].
Back, Seoin ;
Tran, Kevin ;
Ulissi, Zachary W. .
ACS CATALYSIS, 2019, 9 (09) :7651-7659
[5]   Using nature's blueprint to expand catalysis with Earth-abundant metals [J].
Bullock, R. Morris ;
Chen, Jingguang G. ;
Gagliardi, Laura ;
Chirik, Paul J. ;
Farha, Omar K. ;
Hendon, Christopher H. ;
Jones, Christopher W. ;
Keith, John A. ;
Klosin, Jerzy ;
Minteer, Shelley D. ;
Morris, Robert H. ;
Radosevich, Alexander T. ;
Rauchfuss, Thomas B. ;
Strotman, Neil A. ;
Vojvodic, Aleksandra ;
Ward, Thomas R. ;
Yang, Jenny Y. ;
Surendranath, Yogesh .
SCIENCE, 2020, 369 (6505) :786-+
[6]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[7]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
[8]   Operando computational catalysis: shape, structure, and coverage under reaction conditions [J].
De Vrieze, Jenoff E. ;
Gunasooriya, G. T. Kasun Kalhara ;
Thybaut, Joris W. ;
Saeys, Mark .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2019, 23 :85-91
[9]   Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano [J].
Dickens, Colin F. ;
Kirk, Charlotte ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (31) :18960-18977
[10]   Improving Oxygen Electrochemistry through Nanoscopic Confinement [J].
Doyle, Andrew D. ;
Montoya, Joseph H. ;
Vojvodic, Aleksandra .
CHEMCATCHEM, 2015, 7 (05) :738-742