Maximal modifications and Auslander-Reiten duality for non-isolated singularities

被引:85
作者
Iyama, Osamu [1 ]
Wemyss, Michael [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Sch Math, Maxwell Inst, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
MUTATION; EQUIVALENCES; CATEGORIES; MODULES; FLOPS;
D O I
10.1007/s00222-013-0491-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first generalize classical Auslander-Reiten duality for isolated singularities to cover singularities with a one-dimensional singular locus. We then define the notion of CT modules for non-isolated singularities and we show that these are intimately related to noncommutative crepant resolutions (NCCRs). When R has isolated singularities, CT modules recover the classical notion of cluster tilting modules but in general the two concepts differ. Then, wanting to generalize the notion of NCCRs to cover partial resolutions of , in the main body of this paper we introduce a theory of modifying and maximal modifying modules. Under mild assumptions all the corresponding endomorphism algebras of the maximal modifying modules for three-dimensional Gorenstein rings are shown to be derived equivalent. We then develop a theory of mutation for modifying modules which is similar but different to mutations arising in cluster tilting theory. Our mutation works in arbitrary dimension, and in dimension three the behavior of our mutation strongly depends on whether a certain factor algebra is artinian.
引用
收藏
页码:521 / 586
页数:66
相关论文
共 42 条
[1]  
[Anonymous], 1999, HOMOLOGICAL ALGEBRA
[2]  
Assem I., 2006, Elements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, V1
[3]   RATIONAL-SINGULARITIES AND ALMOST SPLIT-SEQUENCES [J].
AUSLANDER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (02) :511-531
[4]  
AUSLANDER M, 1986, LECT NOTES MATH, V1178, P194
[5]   ALMOST SPLIT-SEQUENCES FOR COHEN-MACAULAY-MODULES [J].
AUSLANDER, M ;
REITEN, I .
MATHEMATISCHE ANNALEN, 1987, 277 (02) :345-349
[6]  
AUSLANDER M., 1978, Lecture Notes in Pure Appl. Math., V37, P1
[7]  
BEILINSON AA, 1982, ASTERISQUE, P7
[8]  
Bongartz K., 1981, Lect. Not. Math, V903, P26, DOI DOI 10.1007/BFB0092982
[9]  
Bourbaki N., 1968, ELEMENTS MATH, V1337
[10]  
Bruns W., Cambridge Studies in Advanced Mathematics, V39