On multistability behavior of unstable dissipative systems

被引:33
作者
Anzo-Hernandez, A. [1 ]
Gilardi-Velazquez, H. E. [2 ]
Campos-Canton, E. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Catedras CONACYT, Ave San Claudio & 18 Sur,Colonia San Manuel, Puebla 72570, Mexico
[2] Inst Potosino Invest Cient & Tecnol AC, Div Matemat Aplicadas, Camino Presa San Jose 2055 Col Lomas 4a Secc, San Luis Potosi 78216, SLP, Mexico
关键词
ATTRACTORS;
D O I
10.1063/1.5016329
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present dissipative systems with unstable dynamics called the unstable dissipative systems which are capable of generating a multi-stable behavior, i.e., depending on its initial condition, the trajectory of the system converges to a specific attractor. Piecewise linear ( PWL) systems are generated based on unstable dissipative systems, whose main attribute when they are switched is the generation of chaotic trajectories with multiple wings or scrolls. For this PWL system, a structure is proposed where both the linear part and the switching function depend on two parameters. We show the range of values of such parameters where the PWL system presents a multistable behavior and trajectories with multiscrolls. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Multistability in systems with counter-clockwise input-output dynamics [J].
Angeli, David .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) :596-609
[2]   Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism [J].
Astakhov, V ;
Shabunin, A ;
Uhm, W ;
Kim, S .
PHYSICAL REVIEW E, 2001, 63 (05)
[3]   Multiscroll attractors by switching systems [J].
Campos-Canton, E. ;
Barajas-Ramirez, J. G. ;
Solis-Perales, G. ;
Femat, R. .
CHAOS, 2010, 20 (01)
[4]   Attractors generated from switching unstable dissipative systems [J].
Campos-Canton, Eric ;
Femat, Ricardo ;
Chen, Guanrong .
CHAOS, 2012, 22 (03)
[5]   From synchronization to multistability in two coupled quadratic maps [J].
Carvalho, R ;
Fernandez, B ;
Mendes, RV .
PHYSICS LETTERS A, 2001, 285 (5-6) :327-338
[6]   Multistability and Perceptual Inference [J].
Gershman, Samuel J. ;
Vul, Edward ;
Tenenbaum, Joshua B. .
NEURAL COMPUTATION, 2012, 24 (01) :1-24
[7]   Multistable switches and their role in cellular differentiation networks [J].
Ghaffarizadeh, Ahmadreza ;
Flann, Nicholas S. ;
Podgorski, Gregory J. .
BMC BIOINFORMATICS, 2014, 15
[8]   On the determination of the basin of attraction of discrete dynamical systems [J].
Giesl, Peter .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (06) :523-546
[9]   Multistability in Piecewise Linear Systems versus Eigenspectra Variation and Round Function [J].
Gilardi-Velazquez, H. E. ;
Ontanon-Garcia, L. J. ;
Hurtado-Rodriguez, D. G. ;
Campos-Canton, E. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09)
[10]   Chaos and Diffusion in Dynamical Systems Through Stable-Unstable Manifolds [J].
Guzzo, Massimiliano .
SPACE MANIFOLD DYNAMICS: NOVEL SPACEWAYS FOR SCIENCES AND EXPLORATION, 2010, :97-112