On the harmonic and hyperharmonic Fibonacci numbers

被引:12
作者
Tuglu, Naim [1 ]
Kizilates, Can [2 ]
Kesim, Seyhun [2 ]
机构
[1] Gazi Univ, Dept Math, TR-06500 Ankara, Turkey
[2] Bulent Ecevit Univ, Dept Math, TR-67100 Incivez, Zonguldak, Turkey
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
harmonic number; hyperharmonic number; harmonic Fibonacci number; hyperharmonic Fibonacci number; matrix norm; CIRCULANT MATRICES; SPECTRAL NORMS; LUCAS-NUMBERS;
D O I
10.1186/s13662-015-0635-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the theory of the harmonic and the hyperharmonic Fibonacci numbers. Also, we get some combinatoric identities like as harmonic and hyperharmonic numbers and we obtain some useful formulas for F-n, which is concerned with finite sums of reciprocals of Fibonacci numbers. We obtain the spectral and Euclidean norms of circulant matrices involving harmonic and hyperharmonic Fibonacci numbers.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Some applications on q-analog of the generalized hyperharmonic numbers of order r, Hnr (α)
    Koparal, Sibel
    Omur, Nese
    Colak, Cemile Duygu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 2094 - 2103
  • [42] On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries
    Ipek, Ahmet
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 6011 - 6012
  • [43] On Fibonacci and Lucas Numbers of the Form cx(2)
    Keskin, Refik
    Yosma, Zafer
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (09)
  • [44] INFINITE SUMS RELATED TO THE GENERALIZED FIBONACCI NUMBERS
    Uslu, Kemal
    Teke, Mustafa
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 29 (01): : 85 - 96
  • [45] Carlitz's Equations on Generalized Fibonacci Numbers
    Wang, Min
    Yang, Peng
    Yang, Yining
    SYMMETRY-BASEL, 2022, 14 (04):
  • [46] An Alternating Sum of Fibonacci and Lucas Numbers of Orderk
    Dafnis, Spiros D.
    Philippou, Andreas N.
    Livieris, Ioannis E.
    MATHEMATICS, 2020, 8 (09)
  • [47] On the representation of Fibonacci and Lucas numbers in an integer base
    Bugeaud Y.
    Cipu M.
    Mignotte M.
    Annales mathématiques du Québec, 2013, 37 (1) : 31 - 43
  • [48] Representation of Integers as Sums of Fibonacci and Lucas Numbers
    Park, Ho
    Cho, Bumkyu
    Cho, Durkbin
    Cho, Yung Duk
    Park, Joonsang
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 8
  • [49] On series involving Fibonacci and Lucas numbers I
    Duverney, Daniel
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 62 - +
  • [50] Sums of products of generalized Fibonacci and Lucas numbers
    Belbachir, Hacene
    Bencherif, Farid
    ARS COMBINATORIA, 2013, 110 : 33 - 43