On the harmonic and hyperharmonic Fibonacci numbers

被引:12
|
作者
Tuglu, Naim [1 ]
Kizilates, Can [2 ]
Kesim, Seyhun [2 ]
机构
[1] Gazi Univ, Dept Math, TR-06500 Ankara, Turkey
[2] Bulent Ecevit Univ, Dept Math, TR-67100 Incivez, Zonguldak, Turkey
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
harmonic number; hyperharmonic number; harmonic Fibonacci number; hyperharmonic Fibonacci number; matrix norm; CIRCULANT MATRICES; SPECTRAL NORMS; LUCAS-NUMBERS;
D O I
10.1186/s13662-015-0635-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the theory of the harmonic and the hyperharmonic Fibonacci numbers. Also, we get some combinatoric identities like as harmonic and hyperharmonic numbers and we obtain some useful formulas for F-n, which is concerned with finite sums of reciprocals of Fibonacci numbers. We obtain the spectral and Euclidean norms of circulant matrices involving harmonic and hyperharmonic Fibonacci numbers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On the harmonic and hyperharmonic Fibonacci numbers
    Naim Tuglu
    Can Kızılateş
    Seyhun Kesim
    Advances in Difference Equations, 2015
  • [2] On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers
    Tuglu, Naim
    Kizilates, Can
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [3] On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers
    Naim Tuglu
    Can Kızılateş
    Journal of Inequalities and Applications, 2015
  • [4] Divisibility properties of hyperharmonic numbers
    H. Göral
    D. C. Sertbaş
    Acta Mathematica Hungarica, 2018, 154 : 147 - 186
  • [5] On the Norms of Some Special Matrices with the Harmonic Fibonacci Numbers
    Tuglu, Naim
    Kizilates, Can
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (03): : 497 - 501
  • [6] Divisibility properties of hyperharmonic numbers
    Goral, H.
    Sertbas, D. C.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 147 - 186
  • [7] A q-analog of the hyperharmonic numbers
    Mansour, Toufik
    Shattuck, Mark
    AFRIKA MATEMATIKA, 2014, 25 (01) : 147 - 160
  • [8] AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES
    Bahsi, Mustafa
    Solak, Suleyman
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 387 - 393
  • [9] A new generalization of hyperharmonic numbers
    Dagli, Muhammet Cihat
    ANNALES POLONICI MATHEMATICI, 2022, : 17 - 24
  • [10] Riordan arrays and hyperharmonic numbers
    Wuyungaowa
    ARS COMBINATORIA, 2017, 132 : 81 - 91