Omega limit sets and distributional chaos on graphs

被引:30
作者
Hric, Roman
Malek, Michal
机构
[1] Matej Bel Univ, Fac Nat Sci, Inst Math & Comp Sci, SK-97401 Banska Bystrica, Slovakia
[2] Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, P-1049001 Lisbon, Portugal
[3] Silesian Univ, Math Inst, CZ-74601 Opava, Czech Republic
关键词
graph map; omega limit set; basic set; distributional chaos; positive topological entropy;
D O I
10.1016/j.topol.2005.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a full topological characterization of omega limit sets of continuous maps on graphs and we show that basic sets have similar properties as in the case of the compact interval. We also prove that the presence of distributional chaos, the existence of basic sets, and positive topological entropy (among other properties) are mutually equivalent for continuous graph maps. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2469 / 2475
页数:7
相关论文
共 16 条
[1]  
Agronsky S. J., 1989, Real Anal. Exchange, V15, P483
[2]  
[Anonymous], 1986, TEOR FUNKTSII FUNKTS
[3]  
Babilonova M., 1999, ANN MATH SIL, V13, P33
[4]   Minimal sets on graphs and dendrites [J].
Balibrea, F ;
Hric, R ;
Snoha, L .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1721-1725
[5]  
BLOCK LS, 1992, LECT NOTES MATH, V1513
[6]  
BLOKH A, 1986, FUNCTIONAL ANAL APPL, V46, P32
[7]  
Bruckner A. M., 1992, Math. Bohem., V117, P42
[8]  
Canovas J.S., 2001, COMMENT MATH U CAROL, V42, P583
[9]   Distributional chaos of tree maps [J].
Cánovas, JS ;
Hric, R .
TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) :75-82
[10]  
FRANKS J, 1993, CONT MATH, V152, P69