A class of optimization problems on minimizing variance based criteria in respect of parameter estimators of a linear model

被引:2
作者
Chowdhury, M. [1 ]
Chen, M. [2 ]
Mandal, S. [3 ]
机构
[1] Univ Cent Florida, Dept Stat, Orlando, FL 32816 USA
[2] Cintra 407 ETR Co Ltd, Woodbridge, ON, Canada
[3] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Optimizing probability distributions; Parameter estimation; Optimal designs; Directional derivatives; Multiplicative algorithms; OPTIMAL DESIGNS; CONSTRUCTION;
D O I
10.1080/03610918.2018.1529240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first consider an optimization problem in which we minimize the average or total variance of the estimators of some parameters of interest in a linear model. In some models, subsets of parameters may be of more interest in this respect than all parameters. We then consider a second optimization problem in which we construct designs achieving equality of variances of the estimators of two linear functions of the parameters. The approaches are formulated for a general regression model, and are explored through some models of interest.
引用
收藏
页码:2719 / 2731
页数:13
相关论文
共 24 条