Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils

被引:37
作者
Wetser, Koen [1 ]
Liu, Jia [1 ]
Buisman, Cees [1 ]
Strik, David [1 ]
机构
[1] Wageningen Univ, NL-6708 WG Wageningen, Netherlands
关键词
Plant microbial fuel cell; Salt marsh; Peat soil; Phragmites austrailis; Spartina anglica; Bio-electricity; LIVING PLANTS; GROWTH; POWER; PERFORMANCE; RICE; ALLOCATION; RESISTANCE; MECHANISM; EMISSIONS; FLOW;
D O I
10.1016/j.biombioe.2015.11.006
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil based on experimental data and theoretical calculated potential. PMFC in salt marsh generated more than 10 times more power than the same PMFC in peat soil (18 vs 1.3 mW m(-2) plant growth area). The salt marsh reached a record power output for PMFC technology per cubic meter anode: 2.9 W m(-3). Most power is generated in the top layer of the salt marsh due to the presence of the plants and the tidal advection. The potential current generation for the salt marsh is 0.21-0.48 A m(-2) and for peat soil 0.15-0.86 A m(-2). PMFC technology is potentially able to generate a power density up to 0.52 W m(-2), which is more than what is generated for biomass combustion or anaerobic digestion using the same plant growth area. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 46 条
  • [1] Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell
    Arends, Jan B. A.
    Speeckaert, Jonas
    Blondeel, Evelyne
    De Vrieze, Jo
    Boeckx, Pascal
    Verstraete, Willy
    Rabaey, Korneel
    Boon, Nico
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (07) : 3205 - 3217
  • [2] Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere
    Armstrong, J
    Armstrong, W
    [J]. AMERICAN JOURNAL OF BOTANY, 2001, 88 (08) : 1359 - 1370
  • [3] ARMSTRONG W, 1990, ADV WAT POL, P41
  • [4] Dynamic modeling of the growth of Phragmites australis:: model description
    Asaeda, T
    Karunaratne, S
    [J]. AQUATIC BOTANY, 2000, 67 (04) : 301 - 318
  • [5] Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?
    Brix, H
    Sorrell, BK
    Lorenzen, B
    [J]. AQUATIC BOTANY, 2001, 69 (2-4) : 313 - 324
  • [6] Electrical energy production from forest detritus in a forested wetland using microbial fuel cells
    Dai, Jianing
    Wang, Jun-Jian
    Chow, Alex T.
    Conner, William H.
    [J]. GLOBAL CHANGE BIOLOGY BIOENERGY, 2015, 7 (02): : 244 - 252
  • [7] Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell
    Donovan, Conrad
    Dewan, Alim
    Heo, Deukhyoun
    Beyenal, Haluk
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (22) : 8591 - 8596
  • [8] FLORON Verspreidingsatlas Planten, FLORON MON INT
  • [9] Microbial Fuel Cells, A Current Review
    Franks, Ashley E.
    Nevin, Kelly P.
    [J]. ENERGIES, 2010, 3 (05) : 899 - 919
  • [10] Geochemical behavior of trace elements in sub-tidal marine sediments of the Belgian coast
    Gao, Yue
    Lesven, Ludovic
    Gillan, David
    Sabbe, Koen
    Billon, Gabriel
    De Galan, Sandra
    Elskens, Marc
    Baeyens, Willy
    Leermakers, Martine
    [J]. MARINE CHEMISTRY, 2009, 117 (1-4) : 88 - 96