The number of irreducible polynomials over finite fields of characteristic 2 with given trace and subtrace

被引:6
作者
Ri, Won-Ho [1 ]
Myong, Gum-Chol [1 ]
Kim, Ryul [1 ]
Rim, Chang-Il [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, Democratic Peop, North Korea
关键词
Finite field; Irreducible polynomial; Trace; Mobius inversion formula; HANSEN-MULLEN CONJECTURE; PRESCRIBED COEFFICIENTS; ELLIPTIC-CURVES; GF(2);
D O I
10.1016/j.ffa.2014.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtained the formula for the number of irreducible polynomials with degree n over finite fields of characteristic two with given trace and subtrace. This formula is a generalization of the result of Cattell et al. (2003) [2]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 131
页数:14
相关论文
共 50 条
[41]   CHARACTERISTIC POLYNOMIALS OF SIMPLE ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS [J].
Jones, Lenny .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) :391-397
[42]   On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields [J].
Aubry, Y ;
Perret, M .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :412-431
[43]   Bit-Parallel Multipliers for Different Irreducible Polynomials in Finite Fields [J].
Yi, Haibo ;
Li, Weijian ;
Nie, Zhe .
PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, :505-508
[44]   Counting irreducible polynomials over GF(3) with first and third coefficients given [J].
Sharma, P. L. ;
Rehan, M. ;
Sharma, S. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (01)
[45]   A divided-difference characterization of polynomials over finite fields of characteristic two [J].
Veasna Kim ;
Vichian Laohakosol ;
Sukrawan Mavecha .
Aequationes mathematicae, 2022, 96 :339-347
[46]   Several classes of complete permutation polynomials over finite fields of even characteristic [J].
Tu, Ziran ;
Zeng, Xiangyong ;
Mao, Jinxiu ;
Zhou, Junchao .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
[47]   Four Classes of Bivariate Permutation Polynomials over Finite Fields of Even Characteristic [J].
Chen, Changhui ;
Kan, Haibin ;
Peng, Jie ;
Wang, Li .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (07) :1045-1048
[48]   A divided-difference characterization of polynomials over finite fields of characteristic two [J].
Kim, Veasna ;
Laohakosol, Vichian ;
Mavecha, Sukrawan .
AEQUATIONES MATHEMATICAE, 2022, 96 (02) :339-347
[49]   A NOTE ON THE KERNEL OF TRACE OVER FINITE FIELDS [J].
Jin, Yong ;
Jiang, Jing-jing ;
Shen, Lin-zhi .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (02) :251-259
[50]   Stable polynomials over finite fields [J].
Gomez-Perez, Domingo ;
Nicolas, Alejandro P. ;
Ostafe, Alina ;
Sadornil, Daniel .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) :523-535