COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms

被引:0
作者
Villagrana-Banuelos, Karen E. [1 ]
Maeda-Gutierrez, Valeria [1 ]
Alcala-Rmz, Vanessa [1 ]
Oropeza-Valdez, Juan J. [2 ]
Herrera-Van Oostdam, Ana S. [3 ]
Castaneda-Delgado, Julio E. [4 ]
Adrian Lopez, Jesus [5 ]
Borrego Moreno, Juan C. [6 ]
Galvan-Tejada, Carlos E. [1 ]
Galvan-Tejeda, Jorge I. [1 ]
Gamboa-Rosales, Hamurabi [1 ]
Luna-Garcia, Huizilopoztli [1 ]
Celaya-Padilla, Jose M. [1 ]
Lopez-Hernandez, Yamile [7 ]
机构
[1] UAZ, Elect Engn Acad Unit, Zacatecas, Zacatecas, Mexico
[2] UAZ, Metabol & Prote Lab, Zacatecas, Zacatecas, Mexico
[3] Univ Autonoma San Luis Potosi, Doctorate Program, Ciencias Biomed Basicas, Ctr Invest Ciencias Salud & Biomed, Slp, Mexico
[4] Inst Mexicano Seguridad Social, Consejo Nacl Ciencia & Tecnol CONACyT, Zacatecas, Zacatecas, Mexico
[5] UAZ, Biol Sci Acad Unit, MicroRNAs Lab, Zacatecas, Zacatecas, Mexico
[6] Inst Mexicano Seguro Social, Hosp Gen Zona Emilio Varela Lujan 1, Dept Epidemiol, Zacatecas, Zacatecas, Mexico
[7] UAZ, Metabol & Prote Lab, CONACyT, Zacatecas, Zacatecas, Mexico
来源
REVISTA DE INVESTIGACION CLINICA-CLINICAL AND TRANSLATIONAL INVESTIGATION | 2022年 / 74卷 / 06期
关键词
COVID-19; Metabolomics; Random forest; Biomarker; Machine learning; Genetic algorithm; LC-MS; SELECTION;
D O I
10.24875/RIC.22000182
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.
引用
收藏
页码:314 / 327
页数:14
相关论文
共 32 条
[1]   Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study [J].
An, Chansik ;
Lim, Hyunsun ;
Kim, Dong-Wook ;
Chang, Jung Hyun ;
Choi, Yoon Jung ;
Kim, Seong Woo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Kynurenine and Hemoglobin as Sex-Specific Variables in COVID-19 Patients: A Machine Learning and Genetic Algorithms Approach [J].
Celaya-Padilla, Jose M. ;
Villagrana-Banuelos, Karen E. ;
Oropeza-Valdez, Juan Jose ;
Monarrez-Espino, Joel ;
Castaneda-Delgado, Julio E. ;
Oostdam, Ana Sofia Herrera-Van ;
Fernandez-Ruiz, Julio Cesar ;
Ochoa-Gonzalez, Fatima ;
Borrego, Juan Carlos ;
Enciso-Moreno, Jose Antonio ;
Lopez, Jesus Adrian ;
Lopez-Hernandez, Yamile ;
Galvan-Tejada, Carlos E. .
DIAGNOSTICS, 2021, 11 (12)
[4]   Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels [J].
Dambrova, M. ;
Latkovskis, G. ;
Kuka, J. ;
Strele, I. ;
Konrade, I. ;
Grinberga, S. ;
Hartmane, D. ;
Pugovics, O. ;
Erglis, A. ;
Liepinsh, E. .
EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES, 2016, 124 (04) :251-256
[5]  
Fan JQ, 2009, J MACH LEARN RES, V10, P2013
[6]  
Fengxi Song, 2010, Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM 2010), P27, DOI 10.1109/ICSEM.2010.14
[7]  
Flores-Guerrero JL, 2021, NEPHROL DIAL TRANSPL, V36
[8]   Machine learning based early warning system enables accurate mortality risk prediction for COVID-19 [J].
Gao, Yue ;
Cai, Guang-Yao ;
Fang, Wei ;
Li, Hua-Yi ;
Wang, Si-Yuan ;
Chen, Lingxi ;
Yu, Yang ;
Liu, Dan ;
Xu, Sen ;
Cui, Peng-Fei ;
Zeng, Shao-Qing ;
Feng, Xin-Xia ;
Yu, Rui-Di ;
Wang, Ya ;
Yuan, Yuan ;
Jiao, Xiao-Fei ;
Chi, Jian-Hua ;
Liu, Jia-Hao ;
Li, Ru-Yuan ;
Zheng, Xu ;
Song, Chun-Yan ;
Jin, Ning ;
Gong, Wen-Jian ;
Liu, Xing-Yu ;
Huang, Lei ;
Tian, Xun ;
Li, Lin ;
Xing, Hui ;
Ma, Ding ;
Li, Chun-Rui ;
Ye, Fei ;
Gao, Qing-Lei .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Feature Selection Using Genetic Algorithms for the Generation of a Recognition and Classification of Children Activities Model Using Environmental Sound [J].
Garcia-Dominguez, Antonio ;
Galvan-Tejada, Carlos E. ;
Zanella-Calzada, Laura A. ;
Gamboa-Rosales, Hamurabi ;
Galvan-Tejada, Jorge, I ;
Celaya-Padilla, Jose M. ;
Luna-Garcia, Huizilopoztli ;
Magallanes-Quintanar, Rafael .
MOBILE INFORMATION SYSTEMS, 2020, 2020
[10]   Early risk assessment for COVID-19 patients from emergency department data using machine learning [J].
Heldt, Frank S. ;
Vizcaychipi, Marcela P. ;
Peacock, Sophie ;
Cinelli, Mattia ;
McLachlan, Lachlan ;
Andreotti, Fernando ;
Jovanovic, Stojan ;
Durichen, Robert ;
Lipunova, Nadezda ;
Fletcher, Robert A. ;
Hancock, Anne ;
McCarthy, Alex ;
Pointon, Richard A. ;
Brown, Alexander ;
Eaton, James ;
Liddi, Roberto ;
Mackillop, Lucy ;
Tarassenko, Lionel ;
Khan, Rabia T. .
SCIENTIFIC REPORTS, 2021, 11 (01)