General existence principles for nonlocal boundary value problems with φ-laplacian and their applications

被引:47
作者
Agarwal, Ravi P. [1 ]
O'Regan, Donal
Stanek, Svatoslav
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
[3] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77900, Czech Republic
关键词
D O I
10.1155/AAA/2006/96826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form (phi(x'))' = f(1)(t, x, x') + f(2)(t, x, x')F(1)x + f(3)(t, x, x') F(2)x,alpha(x) = 0, beta(x) = 0, where f(j) satisfy local Caratheodory conditions on some [0, T] x D-j subset of R-2, f(j) are either regular or have singularities in their phase variables (j = 1, 2, 3), F-i : C-1[0, T] -> C-0[0, T] (i = 1, 2), and alpha, beta : C-1[0, T] -> R are continuous. The proofs are based on the Leray-Schauder degree theory and use regularization and sequential techniques. Applications of general existence principles to singular BVPs are given. Copyright (c) 2006 Ravi P. Agarwal et al.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 12 条
[1]   Solvability of singular Dirichlet boundary-value problems with given maximal values for positive solutions [J].
Agarwal, RP ;
O'Regan, D ;
Stanek, S .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :1-19
[2]   Positive solutions of nonlocal singular boundary value problems [J].
Agarwal, RP ;
O'Regan, D ;
Stanek, S .
GLASGOW MATHEMATICAL JOURNAL, 2004, 46 :537-550
[3]  
Bartle R. G., 2001, GRADUATE STUDIES MAT, V32
[4]  
BOBISUD LE, 1999, APPL ANAL, V72, P1
[5]   Existence theory for functional p-Laplacian equations with variable exponents [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :557-572
[6]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
Lang Serge, 1993, REAL FUNCTIONAL ANAL
[9]  
RACHUNKOVA I, 2004, GEORGIAN MATH J, V11, P549
[10]   A nonlocal boundary value problem with singularities in phase variables [J].
Stanek, S .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (1-2) :101-116