On the integrability of the Bukhvostov-Lipatov model

被引:5
作者
Ameduri, M [1 ]
Efthimiou, CJ [1 ]
Gerganov, B [1 ]
机构
[1] Cornell Univ, Newman Lab Nucl Studies, Ithaca, NY 14853 USA
关键词
D O I
10.1142/S021773239900242X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The integrability of the Bukhvostov-Lipatov four-fermion model is investigated. It is shown that the classical model possesses a current of Lorentz spin-3, conserved both in the bulk and on the half-line for specific types of boundary actions. It is then established that the conservation law is spoiled at the quantum level - a fact that might indicate that the quantum Bukhvostov-Lipatov model is not integrable, contrary to what was previously believed.
引用
收藏
页码:2341 / 2351
页数:11
相关论文
共 24 条
[1]   Is the classical Bukhvostov-Lipatov model integrable? A Painleve analysis [J].
Ameduri, M ;
Efthimiou, CJ .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (02) :132-139
[2]   CONSERVED CURRENTS IN MASSIVE THIRRING MODEL [J].
BERG, B ;
KAROWSKI, M ;
THUN, HJ .
PHYSICS LETTERS B, 1976, 64 (03) :286-288
[3]   PLATE TECTONICS AND PALEO-CIRCULATION - COMMOTION IN OCEAN [J].
BERGGREN, WA ;
HOLLISTER, CD .
TECTONOPHYSICS, 1977, 38 (1-2) :11-48
[4]   INSTANTON ANTI-INSTANTON INTERACTION IN THE O(3) NON-LINEAR SIGMA-MODEL AND AN EXACTLY SOLUBLE FERMION THEORY [J].
BUKHVOSTOV, AP ;
LIPATOV, LN .
NUCLEAR PHYSICS B, 1981, 180 (01) :116-140
[5]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[6]   The sigma model (dual) representation for a two-parameter family of integrable quantum field theories [J].
Fateev, VA .
NUCLEAR PHYSICS B, 1996, 473 (03) :509-538
[7]   INFINITE SET OF CONSERVATION LAWS OF SUPERSYMMETRIC SINE-GORDON THEORY [J].
FERRARA, S ;
GIRARDELLO, L ;
SCIUTO, S .
PHYSICS LETTERS B, 1978, 76 (03) :303-306
[8]   RENORMALIZATION OF A HIGHER CONSERVATION LAW IN MASSIVE THIRRING MODEL [J].
FLUME, R ;
MEYER, S .
LETTERE AL NUOVO CIMENTO, 1977, 18 (08) :238-240
[9]   HIGHER CONSERVED CHARGES IN MASSIVE THIRRING MODEL [J].
FLUME, R ;
MITTER, PK ;
PAPANICOLAOU, N .
PHYSICS LETTERS B, 1976, 64 (03) :289-292
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&