Tidal interactions of a Maclaurin spheroid - I. Properties of free oscillation modes

被引:18
作者
Braviner, Harry J. [1 ]
Ogilvie, Gordon I. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
关键词
hydrodynamics; waves; planet-star interactions; binaries: general; INERTIAL WAVES; DISSIPATION; JUPITER; STARS; EVOLUTION; FRICTION; SYSTEMS; ORIGIN; TIDES;
D O I
10.1093/mnras/stu704
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review the work of Bryan (1889) on the normal modes of a Maclaurin spheroid, carrying out numerical calculations of the frequencies and spatial forms of these modes that have not been previously published. We study all modes of degree l a parts per thousand currency sign 4, which includes both inertial modes and surface gravity modes, with the aim of better understanding the effect of rapid rotation on tidal interactions. The inclusion of these higher degree modes greatly increases the number of frequencies at which tidal resonances may occur. We derive an expression for the decay rates of these modes to first order in viscosity and explicitly plot these for modes. We see that the equatorial bulge of the spheroid has a significant effect on the decay rates (changing some of these by a factor of 2 between an eccentricity of e = 0 and 0.5), and a more modest effect on the mode frequencies. This suggests that models of tidal interaction between rapidly rotating stars and giant planets that model the Coriolis force while neglecting the centrifugal distortion of the body may be in error by an order unity factor. In a subsequent paper, we shall examine the case of a forced flow in this spheroid, and complete the model by considering how the tides raised by the orbiting companion change the orbital elements.
引用
收藏
页码:2321 / 2345
页数:25
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS [J].
Albrecht, Simon ;
Winn, Joshua N. ;
Johnson, John A. ;
Howard, Andrew W. ;
Marcy, Geoffrey W. ;
Butler, R. Paul ;
Arriagada, Pamela ;
Crane, Jeffrey D. ;
Shectman, Stephen A. ;
Thompson, Ian B. ;
Hirano, Teruyuki ;
Bakos, Gaspar ;
Hartman, Joel D. .
ASTROPHYSICAL JOURNAL, 2012, 757 (01)
[3]  
Binney J, 2008, PRINCETON SERIES AST, V2nd
[4]  
Bryan G.H., 1889, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, V180, P187, DOI 10.1098/rsta.1889.0006
[5]  
Chandrasekhar S., 1987, ELLIPSOIDAL FIGURES
[6]   TIDAL FRICTION IN EARLY-TYPE STARS [J].
GOLDREICH, P ;
NICHOLSON, PD .
ASTROPHYSICAL JOURNAL, 1989, 342 (02) :1079-1084
[7]   ON THE ECCENTRICITY OF SATELLITE ORBITS IN THE SOLAR SYSTEM [J].
GOLDREICH, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1963, 126 (03) :257-268
[8]   Dynamical tide in solar-type binaries [J].
Goodman, J ;
Dickson, ES .
ASTROPHYSICAL JOURNAL, 1998, 507 (02) :938-944
[9]   CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS [J].
Hansen, Brad M. S. .
ASTROPHYSICAL JOURNAL, 2010, 723 (01) :285-299
[10]   An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b [J].
Hellier, Coel ;
Anderson, D. R. ;
Cameron, A. Collier ;
Gillon, M. ;
Hebb, L. ;
Maxted, P. F. L. ;
Queloz, D. ;
Smalley, B. ;
Triaud, A. H. M. J. ;
West, R. G. ;
Wilson, D. M. ;
Bentley, S. J. ;
Enoch, B. ;
Horne, K. ;
Irwin, J. ;
Lister, T. A. ;
Mayor, M. ;
Parley, N. ;
Pepe, F. ;
Pollacco, D. L. ;
Segransan, D. ;
Udry, S. ;
Wheatley, P. J. .
NATURE, 2009, 460 (7259) :1098-1100