Bounds on the deficit in the logarithmic Sobolev inequality

被引:43
作者
Bobkov, S. G. [1 ]
Gozlan, N. [2 ]
Roberto, C. [3 ]
Samson, P. -M. [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Paris Est Marne La Vallee, Lab Anal & Math Appliquees, UMR CNRS 8050, F-77454 Marne La Vallee 2, France
[3] Univ Paris Quest Nanterre Def, MODALX, EA 3454, F-92000 Nanterre, France
基金
美国国家科学基金会;
关键词
Logarithmic Sobolev inequality; Probability distances; Optimal transport; Gaussian measures; TRANSPORTATION-COST; MASS-TRANSPORT; INFORMATION; PROOF; HYPERCONTRACTIVITY; STABILITY;
D O I
10.1016/j.jfa.2014.09.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The deficit in the logarithmic Sobolev inequality for the Gaussian measure is considered and estimated by means of transport and information-theoretic distances. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4110 / 4138
页数:29
相关论文
共 40 条
[1]  
Ane C., 2000, INEGALITES SOBOLEV L, V10
[2]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[3]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[4]   Dimension dependent hypercontractivity for Gaussian kernels [J].
Bakry, Dominique ;
Bolley, Francois ;
Gentil, Ivan .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) :845-874
[5]   Mass transport and variants of the logarithmic sobolev inequality [J].
Barthe, Franck ;
Kolesnikov, Alexander V. .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) :921-979
[6]   THE CONVOLUTION INEQUALITY FOR ENTROPY POWERS [J].
BLACHMAN, NM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :267-271
[7]  
Bobkov SG, 1997, ANN PROBAB, V25, P206
[8]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[9]  
Bobkov SG, 1997, ANN PROBAB, V25, P184
[10]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28