Semistable abelian varieties over Q

被引:4
作者
Calegari, F [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Recent Result; Abelian Variety; Good Reduction; Semistable Abelian Variety; Discriminant Bound;
D O I
10.1007/s00229-004-0445-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for N=6 and N=10, there do not exist any non-zero semistable abelian varieties over Q with good reduction outside primes dividing N. Our results are contingent on the GRH discriminant bounds of Odlyzko. Combined with recent results of Brumer-Kramer and of Schoof, this result is best possible: if N is squarefree, there exists a non-zero semistable abelian variety over Q with good reduction outside primes dividing N precisely when N is not an element of {1,2,3,5,6,7,10,13}.
引用
收藏
页码:507 / 529
页数:23
相关论文
共 13 条
[1]  
[Anonymous], 1992, ALGEBRAISCHE ZAHLENT
[2]  
[Anonymous], 1967, I HAUTES ETUDES SCI
[3]   Non-existence of certain semistable abelian varieties [J].
Brumer, A ;
Kramer, K .
MANUSCRIPTA MATHEMATICA, 2001, 106 (03) :291-304
[4]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[5]   THERE IS NO ABELIAN MANIFOLD ON Z [J].
FONTAINE, JM .
INVENTIONES MATHEMATICAE, 1985, 81 (03) :515-538
[6]  
Grothendieck A., 1972, LECT NOTES MATH, V288
[7]  
Katz N.M., 1985, ANN MATH STUDIES, V108
[8]  
KATZ NM, 1981, INVENT MATH, V62, P481
[9]  
MARTINET J, 1982, LONDON MATH SOC LECT, V56
[10]  
MAZUR B., 1977, I HAUTES ETUDES SCI, P33, DOI [DOI 10.1007/BF02684339, 10.1007/BF02684339]