Hydrodynamic and suspended sediment transport controls on river mouth morphology

被引:13
作者
Falcini, F. [1 ]
Piliouras, A. [2 ]
Garra, R. [3 ]
Guerin, A. [4 ]
Jerolmack, D. J. [5 ]
Rowland, J. [6 ]
Paola, C. [7 ]
机构
[1] CNR, Ist Sci Atmosfera & Clima, Rome, Italy
[2] Univ Texas Austin, Dept Geol Sci, Austin, TX USA
[3] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Rome, Italy
[4] Univ Paris Diderot, Inst Phys Globe Paris, Equipe Dynam Fluides Geol, Paris, France
[5] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA
[6] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
[7] Univ Minnesota, Dept Geol & Geophys, Minneapolis, MN USA
基金
美国国家科学基金会;
关键词
river mouth; suspended sediment; potential vorticity; MISSISSIPPI DELTA; DEPOSITION;
D O I
10.1002/2013JF002831
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
River mouths building into standing bodies of water have strikingly varied growth habits. This presents a compelling pattern formation problem that is also of great practical relevance for subsurface prediction and managing coastal wetlands. Here we present a generalized 2.5-dimensional potential vorticity (PV) theory that explains sedimentation patterns of a sediment-laden stationary jet by coupling an understanding of vorticity with suspended sediment concentration fields. We explore the physical meaning of this new sediment-PV definition, and its impact on outflow depositional patterns, by analyzing data from a shallow wall-bounded plane jet experiment and by discussing new theoretical insights. A key result is that lateral advection and diffusion of suspended sediment are directly proportional to jet vorticity, a feature that reveals the mechanistic process that forms elongated channels by focused levee deposition. The new PV theory constitutes a more generalized mathematical framework that expands the Rouse theory for the equilibrium of suspended sediment.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 41 条
[1]  
Abramovich G. N., 1963, The Theory of Turbulent Jets
[2]  
ALBERTSON ML, 1950, T AM SOC CIV ENG, V115, P639
[3]  
BATES CC, 1953, AAPG BULL, V37, P2119
[4]   Fluvial responses to climate and sea-level change:: a review and look forward [J].
Blum, MD ;
Törnqvist, TE .
SEDIMENTOLOGY, 2000, 47 :2-48
[5]   Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise [J].
Blum, Michael D. ;
Roberts, Harry H. .
NATURE GEOSCIENCE, 2009, 2 (07) :488-491
[6]   Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change [J].
Day, JW ;
Shaffer, GP ;
Britsch, LD ;
Reed, DJ ;
Hawes, SR ;
Cahoon, D .
ESTUARIES, 2000, 23 (04) :425-438
[7]   Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks [J].
Edmonds, D. A. ;
Slingerland, R. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2007, 112 (F2)
[8]   Significant effect of sediment cohesion on delta morphology [J].
Edmonds, Douglas A. ;
Slingerland, Rudy L. .
NATURE GEOSCIENCE, 2010, 3 (02) :105-109
[9]   TURBULENT ENTRAINMENT IN STRATIFIED FLOWS [J].
ELLISON, TH ;
TURNER, JS .
JOURNAL OF FLUID MECHANICS, 1959, 6 (03) :423-448
[10]  
Ertel H., 1942, METEOROL Z, V59, P277, DOI DOI 10.1007/BF01475602