On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems

被引:87
作者
Jensen, Jakob S. [1 ]
Nakshatrala, Praveen B. [2 ]
Tortorelli, Daniel A. [2 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
欧洲研究理事会;
关键词
Topology optimization; Numerical time integration; Adjoint sensitivity analysis; TOPOLOGY OPTIMIZATION; DESIGN;
D O I
10.1007/s00158-013-1024-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gradient-based topology optimization typically involves thousands or millions of design variables. This makes efficient sensitivity analysis essential and for this the adjoint variable method (AVM) is indispensable. For transient problems it has been observed that the traditional AVM, based on a differentiate-then-discretize approach, may lead to inconsistent sensitivities. Herein this effect is explicitly demonstrated for a single dof system and the source of inconsistency is identified. Additionally, we outline an alternative discretize-then-differentiate AVM that inherently produces consistent sensitivities.
引用
收藏
页码:831 / 837
页数:7
相关论文
共 15 条
  • [1] [Anonymous], 2013, Topology optimization: theory, methods, and applications
  • [2] GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD
    BENDSOE, MP
    KIKUCHI, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) : 197 - 224
  • [3] Topology optimization for transient wave propagation problems in one dimension Design of filters and pulse modulators
    Dahl, Jonas
    Jensen, Jakob S.
    Sigmund, Ole
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2008, 36 (06) : 585 - 595
  • [4] Design of robust and efficient photonic switches using topology optimization
    Elesin, Y.
    Lazarov, B. S.
    Jensen, J. S.
    Sigmund, O.
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2012, 10 (01) : 153 - 165
  • [5] STRUCTURAL OPTIMIZATION IN DYNAMICS RESPONSE REGIME - A COMPUTATIONAL APPROACH
    FOX, RL
    KAPOOR, MP
    [J]. AIAA JOURNAL, 1970, 8 (10) : 1798 - &
  • [6] Gunzburger MD, 1999, INT J NUMER METH FL, V31, P53, DOI 10.1002/(SICI)1097-0363(19990915)31:1<53::AID-FLD955>3.0.CO
  • [7] 2-Z
  • [8] A review of optimization of structures subjected to transient loads
    Kang, BS
    Park, GJ
    Arora, JS
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 31 (02) : 81 - 95
  • [9] Material microstructure optimization for linear elastodynamic energy wave management
    Le, Chau
    Bruns, Tyler E.
    Tortorelli, Daniel A.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (02) : 351 - 378
  • [10] Optimal topology design of structures under dynamic loads
    Min, S
    Kikuchi, N
    Park, YC
    Kim, S
    Chang, S
    [J]. STRUCTURAL OPTIMIZATION, 1999, 17 (2-3) : 208 - 218