High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites

被引:311
作者
Yakunin, Sergii [1 ,2 ]
Benin, Bogdan M. [1 ,2 ]
Shynkarenko, Yevhen [1 ,2 ]
Nazarenko, Olga [1 ,2 ]
Bodnarchuk, Maryna I. [1 ,2 ]
Dirin, Dmitry N. [1 ,2 ]
Hofer, Christoph [3 ]
Cattaneo, Stefano [3 ]
Kovalenko, Maksym V. [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Inorgan Chem Lab, Zurich, Switzerland
[2] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
[3] Swiss Ctr Elect & Microtechnol CSEM, Ctr Landquart, Landquart, Switzerland
基金
欧盟地平线“2020”;
关键词
FLUORESCENCE LIFETIME; INFRARED THERMOGRAPHY; SOLAR-CELLS; EFFICIENT; TIME; PHOSPHORS; PHOTONS; PB;
D O I
10.1038/s41563-019-0416-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence lifetime of low-dimensional, perovskite-like tin-halides and apply this property to thermal imaging. The photoluminescence lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns degrees C-1). Typically, this sensitive range spans up to 100 degrees C, and it is both compound-specific and shown to be compositionally and structurally tunable from -100 to 110 degrees C going from [C(NH2)(3)](2)SnBr4 to Cs4SnBr6 and (C4N2H14I)(4)SnI6. Finally, through the implementation of cost-effective hardware for fluorescence lifetime imaging, based on time-of-flight technology, these thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.
引用
收藏
页码:846 / +
页数:8
相关论文
共 52 条
[21]   Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J].
Kovalenko, Maksym V. ;
Protesescu, Loredana ;
Bodnarchuk, Maryna I. .
SCIENCE, 2017, 358 (6364) :745-750
[22]   Medical applications of infrared thermography: A review [J].
Lahiri, B. B. ;
Bagavathiappan, S. ;
Jayakumar, T. ;
Philip, John .
INFRARED PHYSICS & TECHNOLOGY, 2012, 55 (04) :221-235
[23]   Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites [J].
Lee, Michael M. ;
Teuscher, Joel ;
Miyasaka, Tsutomu ;
Murakami, Takurou N. ;
Snaith, Henry J. .
SCIENCE, 2012, 338 (6107) :643-647
[24]   Thermal properties of mid-infrared colloidal quantum dot detectors [J].
Lhuillier, Emmanuel ;
Keuleyan, Sean ;
Rekemeyer, Paul ;
Guyot-Sionnest, Philippe .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)
[25]   Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays [J].
Li, David Day-Uei ;
Ameer-Beg, Simon ;
Arlt, Jochen ;
Tyndall, David ;
Walker, Richard ;
Matthews, Daniel R. ;
Visitkul, Viput ;
Richardson, Justin ;
Henderson, Robert K. .
SENSORS, 2012, 12 (05) :5650-5669
[26]   Low-Dimensional Organometal Halide Perovskites [J].
Lin, Haoran ;
Zhou, Chenkun ;
Tian, Yu ;
Siegrist, Theo ;
Ma, Biwu .
ACS ENERGY LETTERS, 2018, 3 (01) :54-62
[27]   Discrete states and carrier-phonon scattering in quantum dot population dynamics [J].
Man, Minh Tan ;
Lee, Hong Seok .
SCIENTIFIC REPORTS, 2015, 5
[28]   Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites [J].
Mao, Lingling ;
Guo, Peijun ;
Kepenekian, Mikael ;
Hadar, Ido ;
Katan, Claudine ;
Even, Jacky ;
Schaller, Richard D. ;
Stoumpos, Constantinos C. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (40) :13078-13088
[29]   A broadening temperature sensitivity range with a core-shell YbEr@ YbNd double ratiometric optical nanothermometer [J].
Marciniak, L. ;
Prorok, K. ;
Frances-Soriano, L. ;
Perez-Prieto, J. ;
Bednarkiewicz, A. .
NANOSCALE, 2016, 8 (09) :5037-5042
[30]   Non-contact luminescence lifetime cryothermometry for macromolecular crystallography [J].
Mykhaylyk, V. B. ;
Wagner, A. ;
Kraus, H. .
JOURNAL OF SYNCHROTRON RADIATION, 2017, 24 :636-645