Travelling Waves in a Nonlocal Reaction-Diffusion Equation as a Model for a Population Structured by a Space Variable and a Phenotypic Trait

被引:56
作者
Alfaro, Matthieu [1 ]
Coville, Jerome [2 ]
Raoul, Gael [3 ]
机构
[1] Univ Montpellier 2, I3M, Montpellier, France
[2] INRA, Equipe BIOSP, Avignon, France
[3] CNRS, UMR 5175, Ctr Ecol Fonct & Evolut, F-34293 Montpellier, France
关键词
Nonlocal reaction-diffusion equation; Structured population; Travelling waves; PRINCIPAL EIGENVALUE; ELLIPTIC-OPERATORS; FRONT PROPAGATION; EVOLUTION; INVASION; ENVIRONMENT; DYNAMICS; RANGE;
D O I
10.1080/03605302.2013.828069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait. To sustain the possibility of invasion in the case where an underlying principal eigenvalue is negative, we investigate the existence of travelling wave solutions. We identify a minimal speed c*>0, and prove the existence of waves when c >= c* and the nonexistence when 0 <= c<c*.
引用
收藏
页码:2126 / 2154
页数:29
相关论文
共 44 条
[1]   Rapid traveling waves in the nonlocal Fisher equation connect two unstable states [J].
Alfaro, Matthieu ;
Coville, Jerome .
APPLIED MATHEMATICS LETTERS, 2012, 25 (12) :2095-2099
[2]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[3]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[4]   EXISTENCE OF NONTRIVIAL STEADY STATES FOR POPULATIONS STRUCTURED WITH RESPECT TO SPACE AND A CONTINUOUS TRAIT [J].
Arnold, Anton ;
Desvillettes, Laurent ;
Prevost, Celine .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (01) :83-96
[5]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[6]   Front acceleration by dynamic selection in Fisher population waves [J].
Benichou, O. ;
Calvez, V. ;
Meunier, N. ;
Voituriez, R. .
PHYSICAL REVIEW E, 2012, 86 (04)
[7]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[8]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[9]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[10]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572