Tissue-Specific Alternative Splicing Analysis Reveals the Diversity of Chromosome 18 Transcriptome

被引:9
|
作者
Shargunov, Alexander V. [1 ,2 ]
Krasnov, George S. [1 ,2 ]
Ponomarenko, Elena A. [2 ,3 ]
Lisitsa, Andrey V. [2 ,3 ]
Shurdov, Mikhail A. [4 ]
Zverev, Vitaliy V. [1 ]
Archakov, Alexander I. [2 ]
Blinov, Vladimir M. [1 ,2 ]
机构
[1] Russian Acad Med Sci, II Mechnikov Inst Vaccines & Sera, Moscow 105064, Russia
[2] Russian Acad Med Sci, VN Orekhovich Inst Biomed Chem, Moscow 119121, Russia
[3] LLC PostGenTech, Moscow 119121, Russia
[4] LLC Panagen, Moscow 129226, Russia
关键词
alternative splicing; next-generation sequencing; functional sites; proteotypic peptides; exon skipping; intron retention; splice junctions; MESSENGER-RNA; DNA METHYLATION; BREAST CANCERS; HUMAN-DISEASE; HUMAN BRAIN; PROTEIN; GENE; DATABASE; SEQ; TRANSLATION;
D O I
10.1021/pr400808u
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Chromosome-centric Human Proteome Project (C-HPP) is aimed to identify the variety of protein products and transcripts of the number of chromosomes. The Russian part of C-HPP is devoted to the study of the human chromosome 18. Using widely accepted Tophat and SpliceGrapher, a tool for accurate splice sites and alternative mRNA isoforms prediction, we performed the extensive mining of the splice variants of chromosome 18 transcripts and encoded protein products in liver, brain, lung, kidney, blood, testis, derma, and skeletal muscles. About 6.1 billion of the reads represented by 450 billion of the bases have been analyzed. The relative frequencies of splice events as well as gene expression profiles in normal tissues are evaluated. Using ExPASy PROSITE, the novel features and possible functional sites of previously unknown splice variants were highlighted. A set of unique proteotypic peptides enabling the identification of novel alternative protein species using mass-spectrometry is constructed. The revealed data will be integrated into the gene-centric knowledgebase of the Russian part of C-HPP available at http://kb18.ru and http://www.splicing.zz.mu/.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [31] Characterization of Tissue-Specific and Developmentally Regulated Alternative Splicing of Exon 64 in the COL5A1 Gene
    Mitchell, Anna L.
    Judis, Luann M.
    Schwarze, Ulrike
    Vaynshtok, Polina M.
    Drumm, Mitchell L.
    Byers, Peter H.
    CONNECTIVE TISSUE RESEARCH, 2012, 53 (03) : 267 - 276
  • [32] Insights from tissue-specific transcriptome sequencing analysis of Triatoma infestans
    Goncalves, Leilane O.
    de Oliveira, Luciana M.
    D'Avila Pessoa, Grasielle C.
    Rosa, Aline C. L.
    Bustamante, Marinely G.
    Belisario, Carlota J.
    Resende, Daniela M.
    Diotaiuti, Lileia G.
    Ruiz, Jeronimo C.
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2017, 112 (06): : 456 - 457
  • [33] CD44 ISOFORM EXPRESSION MEDIATED BY ALTERNATIVE SPLICING - TISSUE-SPECIFIC REGULATION IN MICE
    HIRANO, H
    SCREATON, GR
    BELL, MV
    JACKSON, DG
    BELL, JI
    HODES, RJ
    INTERNATIONAL IMMUNOLOGY, 1994, 6 (01) : 49 - 59
  • [34] Tissue-specific alternative splicing and the functional differentiation of LmLPMO15-1 in Locusta migratoria
    Kong, Lin
    Hu, Huiying
    Li, Pengfei
    Qu, Mingbo
    INSECT SCIENCE, 2024,
  • [35] Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens
    Fesenko, Igor
    Khazigaleeva, Regina
    Kirov, Ilya
    Kniazev, Andrey
    Glushenko, Oksana
    Babalyan, Konstantin
    Arapidi, Georgij
    Shashkova, Tatyana
    Butenko, Ivan
    Zgoda, Victor
    Anufrieva, Ksenia
    Seredina, Anna
    Filippova, Anna
    Govorun, Vadim
    SCIENTIFIC REPORTS, 2017, 7
  • [36] The in vivo minigene approach to analyze tissue-specific splicing
    Stoss, O
    Stoilov, P
    Hartmann, AM
    Nayler, O
    Stamm, S
    BRAIN RESEARCH PROTOCOLS, 1999, 4 (03): : 383 - 394
  • [37] Tissue-Specific Analysis of Pharmacological Pathways
    Hao, Yun
    Quinnies, Kayla
    Realubit, Ronald
    Karan, Charles
    Tatonetti, Nicholas P.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2018, 7 (07): : 453 - 463
  • [38] Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome
    Mollet, I. G.
    Ben-Dov, Claudia
    Felicio-Silva, Daniel
    Grosso, A. R.
    Eleuterio, Pedro
    Alves, Ruben
    Staller, Ray
    Silva, Tito Santos
    Carmo-Fonseca, Maria
    NUCLEIC ACIDS RESEARCH, 2010, 38 (14) : 4740 - 4754
  • [39] Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa
    Linder, Bastian
    Dill, Holger
    Hirmer, Anja
    Brocher, Jan
    Lee, Gek Ping
    Mathavan, Sinnakaruppan
    Bolz, Hanno Joern
    Winkler, Christoph
    Laggerbauer, Bernhard
    Fischer, Utz
    HUMAN MOLECULAR GENETICS, 2011, 20 (02) : 368 - 377
  • [40] Single-Nucleotide Resolution Mapping of the Gossypium raimondii Transcriptome Reveals a New Mechanism for Alternative Splicing of Introns
    Li, Qin
    Xiao, Guanghui
    Zhu, Yu-Xian
    MOLECULAR PLANT, 2014, 7 (05) : 829 - 840