A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI

被引:0
作者
Fusco, Roberta [1 ]
Sansone, Mario [1 ]
Petrillo, Antonella [2 ]
Sansone, Carlo [3 ]
机构
[1] Univ Naples Federico II, Dept Biomed Elect & Telecommun Engn, Naples, Italy
[2] Natl Canc Inst Naples, Fondazione Pascale, Dept Diagnost Imaging, I-80131 Naples, Italy
[3] Univ Naples Federico II, Dept Comp & Syst Engn, Naples, Italy
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION | 2012年 / 7626卷
关键词
breast DCE-MRI; multiple classification system; morphological and dynamic features; IMAGES; DIAGNOSIS; CRITERIA; CANCER; BENIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a Multiple Classifier System (MCS) for classifying breast lesions in Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The proposed MCS combines the results of two classifiers trained with dynamic and morphological features respectively. Twenty-one malignant and seventeen benign breast lesions, histologically proven, were analyzed. Volumes of Interest (VOIs) have been automatically extracted via a segmentation procedure assessed in a previous study. The performance of the MCS have been compared with histological classification. Results indicated that with automatic segmented VOIs 90% of test-set lesions were correctly classified.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 21 条
[1]   Textural Kinetics: A Novel Dynamic Contrast-Enhanced (DCE)-MRI Feature for Breast Lesion Classification [J].
Agner, Shannon C. ;
Soman, Salil ;
Libfeld, Edward ;
McDonald, Margie ;
Thomas, Kathleen ;
Englander, Sarah ;
Rosen, Mark A. ;
Chin, Deanna ;
Nosher, John ;
Madabhushi, Anant .
JOURNAL OF DIGITAL IMAGING, 2011, 24 (03) :446-463
[2]  
[Anonymous], 2001, COCHRANE DATABASE SY
[3]   Automatic classification of clustered microcalcifications by a multiple expert system [J].
De Santo, M ;
Molinara, M ;
Tortorella, F ;
Vento, M .
PATTERN RECOGNITION, 2003, 36 (07) :1467-1477
[4]   Comparison between radiological and artificial neural network diagnosis in clinical screening [J].
Degenhard, A ;
Tanner, C ;
Hayes, C ;
Hawkes, DJ ;
Leach, MO .
PHYSIOLOGICAL MEASUREMENT, 2002, 23 (04) :727-739
[5]  
Fusco R., 2012, P 25 IEEE INT S COMP
[6]  
Fusco R., 2012, P C NAZ BIOING 2012
[7]  
Fusco R, 2011, LECT NOTES COMPUT SC, V6978, P48, DOI 10.1007/978-3-642-24085-0_6
[8]   Textural analysis of contrast-enhanced MR images of the breast [J].
Gibbs, P ;
Turnbull, LW .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (01) :92-98
[9]   Development, standardization, and testing of a lexicon for reporting contrast-enhanced breast magnetic resonance imaging studies [J].
Ikeda, DM ;
Hylton, NM ;
Kinkel, K ;
Hochman, MG ;
Kuhl, CK ;
Kaiser, WA ;
Weinreb, JC ;
Smazal, SF ;
Degani, H ;
Viehweg, P ;
Barclay, J ;
Schnall, MD .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (06) :889-895
[10]   Machine Learning Study of Several Classifiers Trained With Texture Analysis Features to Differentiate Benign from Malignant Soft-Tissue Tumors in T1-MRI Images [J].
Juntu, Jaber ;
Sijbers, Jan ;
De Backer, Steve ;
Rajan, Jeny ;
Van Dyck, Dirk .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (03) :680-689