Dynamic Coresets

被引:14
作者
Chan, Timothy M. [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Approximation algorithms; Dynamic data structures; Randomization; Geometric optimization; Width; k-Center; Word RAM; POINT-SET; ALGORITHMS; MAINTENANCE; DIAMETER; WIDTH; NO;
D O I
10.1007/s00454-009-9165-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a dynamic data structure that can maintain an epsilon-coreset of n points, with respect to the extent measure, in O(log n) time per update for any constant epsilon > 0 and any constant dimension. The previous method by Agarwal, Har-Peled, and Varadarajan requires polylogarithmic update time. For points with integer coordinates bounded by U, we alternatively get O(log logU) time. Numerous applications follow, for example, on dynamically approximating the width, smallest enclosing cylinder, minimum bounding box, or minimum-width annulus. We can also use the same approach to maintain approximate k-centers in time O(log n) (or O(log logU) if the spread is bounded by U) for any constant k and any constant dimension. For the smallest enclosing cylinder problem, we also show that a constant-factor approximation can be maintained in O(1) randomized amortized time on the word RAM.
引用
收藏
页码:469 / 488
页数:20
相关论文
共 50 条
[1]  
Agarwal P. K., 1991, Computational Geometry: Theory and Applications, V1, P65, DOI 10.1016/0925-7721(91)90001-U
[2]   Robust shape fitting via peeling and grating coresets [J].
Agarwal, Pankaj K. ;
Har-Peled, Sariel ;
Yu, Hai .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) :38-58
[3]   Efficient randomized algorithms for some geometric optimization problems [J].
Agarwal, PK ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 16 (04) :317-337
[4]   DYNAMIC HALF-SPACE RANGE REPORTING AND ITS APPLICATIONS [J].
AGARWAL, PK ;
MATOUSEK, J .
ALGORITHMICA, 1995, 13 (04) :325-345
[5]   Approximating extent measures of points [J].
Agarwal, PK ;
Har-Peled, S ;
Varadarajan, KR .
JOURNAL OF THE ACM, 2004, 51 (04) :606-635
[6]   Approximation algorithms for projective clustering [J].
Agarwal, PK ;
Procopiuc, CM .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 46 (02) :115-139
[7]   Line transversals of balls and smallest enclosing cylinders in three dimensions [J].
Agarwal, PK ;
Aronov, B ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) :373-388
[8]  
AGARWAL PK, 2007, CURRENT TRENDS COMBI, P1
[9]  
Badoiu M, 2003, SIAM PROC S, P801
[10]  
BADOIU M, 2002, P 34 ANN ACM S THEOR, P250, DOI DOI 10.1145/509907.509947