Image segmentation based on adaptive K-means algorithm

被引:97
|
作者
Zheng, Xin [1 ]
Lei, Qinyi [1 ]
Yao, Run [1 ]
Gong, Yifei [1 ]
Yin, Qian [1 ]
机构
[1] Beijing Normal Univ, Image Proc & Pattern Recognit Lab, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Image segmentation; Adaptive K-means; Clustering analysis;
D O I
10.1186/s13640-018-0309-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation is an important preprocessing operation in image recognition and computer vision. This paper proposes an adaptive K-means image segmentation method, which generates accurate segmentation results with simple operation and avoids the interactive input of K value. This method transforms the color space of images into LAB color space firstly. And the value of luminance components is set to a particular value, in order to reduce the effect of light on image segmentation. Then, the equivalent relation between K values and the number of connected domains after setting threshold is used to segment the image adaptively. After morphological processing, maximum connected domain extraction and matching with the original image, the final segmentation results are obtained. Experiments proof that the method proposed in this paper is not only simple but also accurate and effective.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Fully Convolutional Neural Network Combined with K-means Clustering Algorithm for Image Segmentation
    He, Bing
    Qiao, FengXiang
    Chen, Weijun
    Wen, Ying
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [42] A contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation
    Theiler, J
    Gisler, G
    ALGORITHMS, DEVICES, AND SYSTEMS FOR OPTICAL INFORMATION PROCESSING, 1997, 3159 : 108 - 118
  • [43] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118
  • [44] A K-means Based Generic Segmentation System
    Irani, Arash Azim Zadeh
    Belaton, Bahari
    PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION, 2009, : 300 - 307
  • [45] Selecting optimal k for K-means in image segmentation using GLCM
    Sabha M.
    Saffarini M.
    Multimedia Tools and Applications, 2024, 83 (18) : 55587 - 55603
  • [46] Skin Detection Based on Image Color Segmentation with Histogram and K-Means Clustering
    Buza, Emir
    Akagic, Amila
    Omanovic, Samir
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 1181 - 1186
  • [47] Customized K-Means Clustering Based Color Image Segmentation Measuring PRI
    Islam, Md Zahidul
    Nahar, Shamsun
    Islam, Sm Shariful
    Islam, Saria
    Mukherjee, Arnab
    Ershad, Lasker
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [48] K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    Clausi, DA
    PATTERN RECOGNITION, 2002, 35 (09) : 1959 - 1972
  • [49] New optimized GPU version of the k-means algorithm for large-sized image segmentation
    Fakhi, Hicham
    Bouattane, Omar
    Youssfi, Mohamed
    Hassan, Ouajji
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [50] Levy-Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation
    Das, Arunita
    Namtirtha, Amrita
    Dutta, Animesh
    APPLIED SOFT COMPUTING, 2023, 140