Identification and Expression Analysis of R2R3-MYB Family Genes Associated with Salt Tolerance in Cyclocarya paliurus

被引:19
作者
Zhang, Zijie [1 ]
Zhang, Lei [1 ]
Liu, Yang [1 ]
Shang, Xulan [1 ,2 ]
Fang, Shengzuo [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Forestry, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
wheel wingnut; salt stress; qRT-PCR; phytohormone signal; MYB TRANSCRIPTION FACTOR; MOLECULAR CHARACTERIZATION; FREEZING TOLERANCE; OSMOTIC-STRESS; CLIMATE-CHANGE; ARABIDOPSIS; RESPONSES; COLD; DROUGHT; CELL;
D O I
10.3390/ijms23073429
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
R2R3-MYB transcription factors are most abundant in the MYB superfamily, while the R2R3-MYB genes play an important role in plant growth and development, especially in response to environmental stress. Cyclocarya paliurus is a multifunction tree species, and the existing resources cannot meet the requirement for its leaf production and medical use. Therefore, lands with some environmental stresses would be potential sites for developing C. paliurus plantations. However, the function of R2R3-MYB genes in C. paliurus in response to environmental stress remains unknown. In this study, to identify the roles of R2R3-MYB genes associated with salt stress response, 153 CpaMYB genes and their corresponding protein sequences were identified from the full-length transcriptome. Based on the comparison with MYB protein sequences of Arabidopsis thaliana, 69 R2R3-MYB proteins in C. paliurus were extracted for further screening combined with conserved functional domains. Furthermore, the MYB family members were analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting element analysis, and gene differential expression under different salt treatments using both a pot experiment and hydroponic experiment. The results showed that the R2R3-MYB genes of C. paliurus conserved functional domains, whereas four R2R3-MYB genes that might respond to salt stress via regulating plant hormone signals were identified in this study. This work provides a basis for further functional characterization of R2R3-MYB TFs in C. paliurus.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Evolution of the R2R3-MYB gene family in six Rosaceae species and expression in woodland strawberry
    Liu Hui
    Xiong Jin-song
    Jiang Yue-ting
    Wang Li
    Cheng Zong-ming
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2019, 18 (12) : 2753 - 2770
  • [42] Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae
    Gates, Daniel J.
    Strickler, Susan R.
    Mueller, Lukas A.
    Olson, Bradley J. S. C.
    Smith, Stacey D.
    JOURNAL OF MOLECULAR EVOLUTION, 2016, 83 (1-2) : 26 - 37
  • [43] Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis
    Tombuloglu, Huseyin
    Kekec, Guzin
    Sakcali, Mehmet Serdal
    Unver, Turgay
    MOLECULAR GENETICS AND GENOMICS, 2013, 288 (3-4) : 141 - 155
  • [44] The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
    Yu, Yuehua
    Ni, Zhiyong
    Chen, Quanjia
    Qu, Yanying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 491 (03) : 642 - 648
  • [45] The oil palm R2R3-MYB subfamily genes EgMYB111 and EgMYB157 improve multiple abiotic stress tolerance in transgenic Arabidopsis plants
    Zhou, Lixia
    Yarra, Rajesh
    Yang, Yaodong
    Liu, Yanju
    Yang, Mengdi
    Cao, Hongxing
    PLANT CELL REPORTS, 2022, 41 (02) : 377 - 393
  • [46] Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.)
    Zhang, Hao-Cheng
    Gong, Yuan-Hang
    Tao, Tao
    Lu, Shuai
    Zhou, Wen-Yu
    Xia, Han
    Zhang, Xin-Yi
    Yang, Qing-Qing
    Zhang, Ming-Qiu
    Hong, Lian-Min
    Guo, Qian-Qian
    Ren, Xin-Zhe
    Yang, Zhi-Di
    Cai, Xiu-Ling
    Ren, De-Yong
    Gao, Ji-Ping
    Jin, Su-Kui
    Leng, Yu-Jia
    BMC GENOMICS, 2024, 25 (01):
  • [47] Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline-Alkali Stress in Quinoa
    Liu, Yuqi
    Wang, Mingyu
    Huang, Yongshun
    Zhu, Peng
    Qian, Guangtao
    Zhang, Yiming
    Li, Lixin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [48] Genome-wide identification and characterization of R2R3-MYB family in Hypericum perforatum under diverse abiotic stresses
    Zhou, Wen
    Zhang, Qian
    Sun, Yan
    Yang, Lei
    Wang, Zhezhi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 145 : 341 - 354
  • [49] Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade
    Zeng, Ying
    Li, Zhipeng
    Chen, Yiqiong
    Li, Wanying
    Wang, Hong-bin
    Shen, Yanting
    GENOMICS, 2023, 115 (04)
  • [50] VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress
    Zhang, Chun-Yu
    Liu, Hong-Chao
    Zhang, Xin-Sheng
    Guo, Qing-Xun
    Bian, Shao-Min
    Wang, Jing-Ying
    Zhai, Lu-Lu
    GENE, 2020, 757