The (1+(λ, λ)) GA Is Even Faster on Multimodal Problems

被引:16
作者
Antipov, Denis [1 ,2 ]
Doerr, Benjamin [2 ]
Karavaev, Vitalii [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
[2] Ecole Polytech, Inst Polytech Paris, CNRS, Lab Informat LIX, Palaiseau, France
来源
GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2020年
基金
俄罗斯科学基金会;
关键词
Runtime analysis; crossover; theory; OFFSPRING POPULATION-SIZE; EVOLUTIONARY ALGORITHMS; RUNTIME ANALYSIS; CHOICE; SEARCH;
D O I
10.1145/3377930.3390148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the (1 + (lambda, lambda)) genetic algorithm rigorous runtime analyses on unimodal fitness functions have shown that it can be faster than classical evolutionary algorithms, though on these simple problems the gains are only moderate. In this work, we conduct the first runtime analysis of this algorithm on a multimodal problem class, the jump functions benchmark. We show that with the right parameters, the (1 + (lambda, lambda)) GA optimizes any jump function with jump size 2 <= k <= n/16 in expected time O(n((k+1)/2)e(O(k))k(-k/2)), which significantly and already for constant k outperforms standard mutation-based algorithms with their Theta(n(k)) runtime and standard crossover-based algorithms with their O(n(k-1)) runtime. Our work also suggests some general advice on how to set the parameters of the (1 + (lambda, lambda)) GA, which might ease the further use of this algorithm.
引用
收藏
页码:1259 / 1267
页数:9
相关论文
共 33 条
  • [1] A Tight Runtime Analysis for the (1+(λ, λ)) GA on LEADINGONES
    Antipov, Denis
    Doerr, Benjamin
    Karavaev, Vitalii
    [J]. FOGA'19: PROCEEDINGS OF THE 15TH ACM/SIGEVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2019, : 169 - 182
  • [2] A Tight Runtime Analysis for the (μ plus λ) EA
    Antipov, Denis
    Doerr, Benjamin
    Fang, Jiefeng
    Hetet, Tangi
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1459 - 1466
  • [3] Antipov Denis, 2020, GEN EV COMP C GECCO
  • [4] Antipov Denis, 2020, RUNTIME ANAL H UNPUB
  • [5] Antipov Denis, 2020, ABS200406702 CORR
  • [6] Runtime Analysis of the (1+(λ,λ)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas
    Buzdalov, Maxim
    Doerr, Benjamin
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1343 - 1350
  • [7] The Unrestricted Black-Box Complexity of Jump Functions
    Buzdalov, Maxim
    Doerr, Benjamin
    Kever, Mikhail
    [J]. EVOLUTIONARY COMPUTATION, 2016, 24 (04) : 719 - 744
  • [8] Escaping Local Optima Using Crossover With Emergent Diversity
    Dang, Duc-Cuong
    Friedrich, Tobias
    Koetzing, Timo
    Krejca, Martin S.
    Lehre, Per Kristian
    Oliveto, Pietro S.
    Sudholt, Dirk
    Sutton, Andrew M.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (03) : 484 - 497
  • [9] Doerr B., 2020, Theory of Evolutionary Computation-Recent Developments in Discrete Optimization, DOI [DOI 10.1007/978-3-030-29414-4_1, 10.1007/978-3-030-29414-4_1, DOI 10.1007/978-3-030-29414-41]
  • [10] A Tight Runtime Analysis for the cGA on Jump Functions-EDAs Can Cross Fitness Valleys at No Extra Cost
    Doerr, Benjamin
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1488 - 1496