Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces

被引:4
作者
Mironescu, Petru [1 ]
Molnar, Ioana [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 05期
关键词
Unimodular maps; Lifting; Sobolev spaces; LIFTINGS;
D O I
10.1016/j.anihpc.2014.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address and answer the question of optimal lifting estimates for unimodular complex valued maps: given s > 0 and 1 < p < co, find the best possible estimate of the form broken vertical bar phi broken vertical bar W-s,W-p less than or similar to F (broken vertical bar e(I phi)broken vertical bar W-s,W-p). The most delicate case is sp < 1. In this case, we extend the results obtained in [3,4] for p = 2 (using L-2 Fourier analysis and optimal constants in the Sobolev embeddings) by developing non-L-2 estimates and an approach based on symmetrization. Following an idea of Bourgain (presented in [3]), our proof also relies on averaged estimates for martingales. As a byproduct of our arguments, we obtain a characterization of fractional Sobolev spaces with 0 <s <1 involving averaged martingale estimates. Also when sp < 1, we propose a new phase construction method, based on oscillations detection, and discuss existence of a bounded phase. When sp >= 1, we extend to higher dimensions a result on optimal estimates of Merlet [20], based on one-dimensional arguments. This extension requires new ingredients (factorization techniques, duality methods). (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:965 / 1013
页数:49
相关论文
共 31 条
[1]  
Adams R.A., 1975, Pure and Applied Mathematics, V65
[2]  
[Anonymous], 1986, J FAC SCI U TOKYO IA
[3]  
Bourdaud G, 1995, REV MAT IBEROAM, V11, P477
[4]   Lifting in Sobolev spaces [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 80 (1) :37-86
[5]   Lifting, degree, and distributional Jacobian revisited [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (04) :529-551
[6]   Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :77-101
[7]  
Bourget JL, 2004, POSITIF, P1, DOI 10.1007/s10240-004-0019-5
[8]  
Brezis H., 1995, Selecta Math. (N.S.), P197
[9]  
Brezis H., ANAL GEOMETRIC UNPUB
[10]  
Brezis H., 1996, Selecta Math. (N.S.), V2, P309, DOI DOI 10.1007/BF01587948