Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites

被引:88
作者
Jimenez-Calvo, Pablo [1 ]
Marchal, Clement [1 ]
Cottineau, Thomas [1 ]
Caps, Valerie [1 ]
Keller, Valerie [1 ]
机构
[1] Univ Strasbourg, CNRS, UMR 7515, ICPEES, 25 Rue Becquerel, F-67087 Strasbourg, France
关键词
GRAPHITIC CARBON NITRIDE; VISIBLE-LIGHT-DRIVEN; HYDROGEN EVOLUTION; ARTIFICIAL PHOTOSYNTHESIS; RAMAN-SPECTROSCOPY; SOLID-SOLUTION; METAL; SEMICONDUCTORS; NANOSHEETS; ACTIVATION;
D O I
10.1039/c9ta01734h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of Au/g-C3N4 nanocomposites for enhanced H-2 production from water under solar and visible light irradiation is presented by varying the g-C3N4 synthesis atmosphere (air, N-2, H-2, Ar and NH3). We showed for the first time that the synthesis of g-C3N4 in a pure NH3 atmosphere led to enhanced photocatalytic performances between 3 and 9 times higher than g-C3N4 prepared in other gas atmospheres. The resulting, novel 0.3 wt% Au/g-C3N4-NH3 photocatalyst produced up to 324 mu mol h(-1) g(cat)(-1) and 26 mu mol h(-1) g(cat)(-1) of H-2 corresponding to internal quantum yields of 1.85 and 0.60% under solar and visible light irradiation respectively, with an unusually low amount of triethanolamine used as the sacrificial agent (1 vol%). This enhanced activity was correlated to the structural, optical, porosity, and surface properties of g-C3N4, and to the quality of the interface with Au NPs. From an in-depth structure-activity correlation study, we highlighted the combined effects of a higher surface area with larger contribution of mesoporous volume, higher crystallization degree of g-C3N4-NH3 and lower deformation of nanosheets. Additionally, the ratio between tri-s-triazine and s-triazine based C3N4 was determined and used for the first time to point out the effect of different continuous gas flow atmospheres during synthesis. Furthermore, the suitable surface chemistry of g-C3N4-NH3 allowed more homogeneous coverage with small Au NPs yielding more intimate contact and higher quality of the interface between Au NPs and the g-C3N4 support.
引用
收藏
页码:14849 / 14863
页数:15
相关论文
共 73 条
[1]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[2]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[3]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[4]   Activation of n → π* Transitions in Two-Dimensional Conjugated Polymers for Visible Light Photocatalysis [J].
Chen, Yan ;
Wang, Bo ;
Lin, Sen ;
Zhang, Yongfan ;
Wang, Xinchen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51) :29981-29989
[5]   Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Liu, Ping ;
Antonietti, Markus ;
Fu, Xianzhi ;
Wang, Xinchen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (04) :1455-1462
[6]   Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution [J].
Cui, Yanjuan ;
Zhang, Jinshui ;
Zhang, Guigang ;
Huang, Jianhui ;
Liu, Ping ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13032-13039
[7]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397
[8]   Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction [J].
Fina, Federica ;
Callear, Samantha K. ;
Carins, George M. ;
Irvine, John T. S. .
CHEMISTRY OF MATERIALS, 2015, 27 (07) :2612-2618
[9]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[10]   High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity [J].
Gao, Jun ;
Zhou, Yong ;
Li, Zhaosheng ;
Yan, Shicheng ;
Wang, Nanyan ;
Zou, Zhigang .
NANOSCALE, 2012, 4 (12) :3687-3692