Trapped modes around freely floating bodies in a two-layer fluid channel

被引:3
作者
Cal, Filipe S. [1 ]
Dias, Goncalo A. S. [1 ]
Videman, Juha H. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, CAMGSD Dept Matemat, P-1049001 Lisbon, Portugal
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 470卷 / 2170期
关键词
trapped modes; freely floating objects; two-layer fluid; WATER-WAVE PROBLEM; EXISTENCE; MOTION; UNIQUENESS; THEOREMS; BODY;
D O I
10.1098/rspa.2014.0396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unlike the trapping of time-harmonic water waves by fixed obstacles, the oscillation of freely floating structures gives rise to a complex nonlinear spectral problem. Still, through a convenient elimination scheme the system simplifies to a linear spectral problem for a self-adjoint operator in a Hilbert space. Under symmetry assumptions on the geometry of the fluid domain, we present conditions guaranteeing the existence of trapped modes in a two-layer fluid channel. Numerous examples of floating bodies supporting trapped modes are given.
引用
收藏
页数:18
相关论文
共 28 条
[1]  
[Anonymous], 1945, Hydrodynamics
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
Birman M.S., 1987, Spectral theory of self-adjoint operators in Hilbert space
[4]   Existence of trapped modes along periodic structures in a two-layer fluid [J].
Cal, F. S. ;
Dias, G. S. A. ;
Videman, J. H. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (02) :273-292
[5]   Linearised theory for surface and interfacial waves interacting with freely floating bodies in a two-layer fluid [J].
Cal, Filipe S. ;
Dias, Goncalo A. S. ;
Nazarov, Serguei A. ;
Videman, Juha H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02) :417-432
[6]   MATHEMATICAL-ANALYSIS OF GUIDED WATER-WAVES [J].
DHIA, ASBB ;
JOLY, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) :1507-1550
[7]   Wave-free motions of isolated bodies and the existence of motion-trapped modes [J].
Evans, D. V. ;
Porter, R. .
JOURNAL OF FLUID MECHANICS, 2007, 584 :225-234
[8]   EXISTENCE THEOREMS FOR TRAPPED MODES [J].
EVANS, DV ;
LEVITIN, M ;
VASSILIEV, D .
JOURNAL OF FLUID MECHANICS, 1994, 261 :21-31
[9]   Passive trapped modes in the water-wave problem for a floating structure [J].
Fitzgerald, C. J. ;
Mciver, P. .
JOURNAL OF FLUID MECHANICS, 2010, 657 :456-477
[10]  
GARIPOV RM, 1963, ARCH RATION MECH AN, V24, P352