New multivariate product density estimators

被引:11
作者
Devroye, L [1 ]
Krzyzak, A
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
[2] Concordia Univ, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
density estimation; kernel estimate; convergence; bandwidth selection; nearest neighbor estimate; Saks rarity theorem; Jessen-Marcinkiewicz-Zygmund theorem; nonparametric estimation;
D O I
10.1006/jmva.2001.2021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be an R-d-valued random variable with unknown density f. Let X-1,..., X-n be i.i.d. random variables drawn from f. The objective is to estimate f(x), where x = (x(1),..., x(d)). We study the pointwise convergence of two new density estimates, the Hilbert product kernel estimate (d!)/(n) Sigma(i=1)(n) Pi(j=1)(d) (1)/(2 log n\xj - Xij\) , where X-i = (X-il, ..., X-id), and the Hilbert k-Dearest neighbor estimate (k(d-1)!)/(2dn logd-1(n/(k(d- 1)!)) Pij=1d\xj - XX(k)j\) , where X-(k) = (X ((k)1), ..., X-(k)d), and X-(k) is the kth nearest neighbor of x when points are ordered by increasing values of the product Pi(j=1)(d) \x(j) - X-(k)j\, and k = o(log n), k --> infinity. The auxiliary results needed permit us to formulate universal consistency results (pointwise and in L-1) for product kernel estimates with different window widths for each coordinate, and for rectangular partitioning and tree estimates. In particular, we show that locally adapted smoothing factors for product kernel estimates may make the kernel estimate inconsistent even under standard conditions on the bandwidths. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:88 / 110
页数:23
相关论文
共 31 条
[1]  
ABOUJAOUDE S, 1976, ANN I H POINCARE B, V12, P299
[2]  
ABOUJAOUDE S, 1976, CR ACAD SCI A MATH, V283, P1107
[3]  
ABOUJAOUDE S, 1976, ANN I H POINCARE B, V12, P213
[4]  
Akaike H., 1954, Ann. Inst. Statist. Math., Tokyo, V6, P127, DOI 10.1007/BF02900741
[5]  
BEIRLANT J, 1999, NONPARAMETRIC STAT, V9, P197
[6]  
BINGHAM N. H., 1989, Regular variation
[7]  
De Guzman M., 1981, Real Variable Methods in Fourier Analysis
[8]   The Hilbert kernel regression estimate [J].
Devroye, L ;
Gyorfi, L ;
Krzyzak, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 65 (02) :209-227
[9]   On the Hilbert kernel density estimate [J].
Devroye, L ;
Krzyzak, A .
STATISTICS & PROBABILITY LETTERS, 1999, 44 (03) :299-308
[10]   THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE CONVERGENCE IN L1 FOR KERNEL DENSITY ESTIMATES [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1983, 11 (03) :896-904