DEEP LEARNING MODELS PERFORMANCE FOR NDVI TIME SERIES PREDICTION: A CASE STUDY ON NORTH WEST TUNISIA

被引:0
作者
Rhif, Manel [1 ]
Ben Abbes, Ali [1 ,2 ]
Martinez, Beatriz [3 ]
Farah, Imed Riadh [1 ]
机构
[1] Ecole Natl Sci Informat, Lab RIADI, Manouba, Tunisia
[2] Univ Sherbrooke, Ctr Applicat & Rech Teledetect CARTEL, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Valencia, Dept Fis Terra & Termodinam, Valencia, Spain
来源
2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS) | 2020年
关键词
time series; prediction; LSTM; BiLSTM; NDVI; vegetation;
D O I
10.1109/m2garss47143.2020.9105149
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The main goal of this paper is to analyze the performance of two deep learning models Long Short-Term Memory (LSTM) and bidirectional LSTM (BiLSTM) network for non-stationary Normalized Difference Vegetation Index (NDVI) time-series prediction. Both methods have provided good performances in the different time series. The BiLSTM has shown the best agreement with the lowest root mean square error (RMSE) and the highest Pearson correlation coefficient (R) of 0.034 and 0.93, respectively.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 9 条
[1]   Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting [J].
Ahani, Ali ;
Shourian, Mojtaba ;
Rad, Peiman Rahimi .
WATER RESOURCES MANAGEMENT, 2018, 32 (02) :383-399
[2]  
Althelaya KA, 2018, INT CONF INFORM COMM, P151, DOI 10.1109/IACS.2018.8355458
[3]  
[Anonymous], 2014, 15 ANN C INT SPEECH
[4]   Comparative study of three satellite image time-series decomposition methods for vegetation change detection [J].
Ben Abbes, Ali ;
Bounouh, Oumayma ;
Farah, Imed Riadh ;
de Jong, Rogier ;
Martinez, Beatriz .
EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) :607-615
[5]  
Hochreiter S., 1997, Neural Computation, V9, P1735
[6]   Prediction of vegetation dynamics using NDVI time series data and LSTM [J].
Reddy D.S. ;
Prasad P.R.C. .
Modeling Earth Systems and Environment, 2018, 4 (1) :409-419
[7]   Bidirectional recurrent neural networks [J].
Schuster, M ;
Paliwal, KK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) :2673-2681
[8]  
Stepchenko A., 2016, P 5 INT VIRT SCI C I, P130
[9]   Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications [J].
Xue, Jinru ;
Su, Baofeng .
JOURNAL OF SENSORS, 2017, 2017