Observation of optomechanical buckling transitions

被引:26
作者
Xu, H. [1 ]
Kemiktarak, U. [1 ,2 ]
Fan, J. [2 ]
Ragole, S. [1 ,3 ]
Lawall, J. [2 ]
Taylor, J. M. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
RADIATION-PRESSURE; CAVITY; BISTABILITY; OSCILLATOR; MIRROR; SYSTEM;
D O I
10.1038/ncomms14481
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first-and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems.
引用
收藏
页数:7
相关论文
共 33 条
[1]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   A controllable nanomechanical memory element [J].
Badzey, RL ;
Zolfagharkhani, G ;
Gaidarzhy, A ;
Mohanty, P .
APPLIED PHYSICS LETTERS, 2004, 85 (16) :3587-3589
[4]  
Bagheri M, 2011, NAT NANOTECHNOL, V6, P726, DOI [10.1038/NNANO.2011.180, 10.1038/nnano.2011.180]
[5]  
Braginsky V B., 1977, Measurement of Weak Forces in Physics Experiments
[6]   Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential [J].
Buchmann, L. F. ;
Zhang, L. ;
Chiruvelli, A. ;
Meystre, P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[7]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[8]   Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK [J].
Corbitt, Thomas ;
Wipf, Christopher ;
Bodiya, Timothy ;
Ottaway, David ;
Sigg, Daniel ;
Smith, Nicolas ;
Whitcomb, Stanley ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[9]   An all-optical trap for a gram-scale mirror [J].
Corbitt, Thomas ;
Chen, Yanbei ;
Innerhofer, Edith ;
Mueller-Ebhardt, Helge ;
Ottaway, David ;
Rehbein, Henning ;
Sigg, Daniel ;
Whitcomb, Stanley ;
Wipf, Christopher ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[10]   Experimental evidence for an optical spring [J].
Di Virgilio, A. ;
Barsotti, L. ;
Braccini, S. ;
Bradaschia, C. ;
Cella, G. ;
Corda, C. ;
Dattilo, V. ;
Ferrante, I. ;
Fidecaro, F. ;
Fiori, I. ;
Frasconi, F. ;
Gennai, A. ;
Giazotto, A. ;
La Penna, P. ;
Losurdo, G. ;
Majorana, E. ;
Mantovani, M. ;
Pasqualetti, A. ;
Passuello, D. ;
Piergiovanni, F. ;
Porzio, A. ;
Puppo, P. ;
Rapagnani, P. ;
Ricci, F. ;
Solimeno, S. ;
Vajente, G. ;
Vetrano, F. .
PHYSICAL REVIEW A, 2006, 74 (01)