On global well-posedness for the Einstein-Maxwell-Euler system in Bondi coordinates

被引:0
作者
Sango, Mamadou [1 ]
Tadmon, Calvin [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ Dschang, Dept Math & Comp Sci, Dschang, Cameroon
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2014年 / 131卷
基金
新加坡国家研究基金会;
关键词
Characteristic Cauchy problem; Einstein-Maxwell-Euler equations; spherical symmetry; irrotational perfect fluid; Bondi coordinates; EQUATIONS;
D O I
10.4171/RSMUP/131-10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the Einstein-Maxwell equations for an irrotational stiff fluid. Under the spherical symmetry assumption on the space-time, in Bondi coordinates, the considered model is reduced to a nonlinear evolution system of partial integrodifferential equations. Assuming regularity at the center of symmetry and that the matter content of the initial light cone is the so-called null dust, the characteristic initial value problem associated to the obtained system is solved globally by a contraction mapping argument. In future work we will address the issue of global well-posedness for the considered model in other physically interesting cases where the matter content of the initial light cone is not the null dust.
引用
收藏
页码:179 / 192
页数:14
相关论文
共 18 条
[1]   Exact Solution of the Relativistic Magnetohydrodynamic Equations in the Background of a Plane Gravitational Wave with Combined Polarization [J].
Agathonov, A. A. ;
Ignatyev, Yu. G. .
GRAVITATION & COSMOLOGY, 2011, 17 (01) :71-75
[2]  
Anile A. M., 1989, Relativistic Fluids and Magneto-fluids
[3]  
[Anonymous], 1967, Relativistic Magnetohydrodynamics
[4]   Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry [J].
Chae, D .
ANNALES HENRI POINCARE, 2003, 4 (01) :35-62
[5]  
Choquet-Bruhat Y., 2009, Monograph
[6]   THE PROBLEM OF A SELF-GRAVITATING SCALAR FIELD [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :337-361
[7]  
Christodoulou D., 2009, EMS MONOGRAPHS MATH
[8]   The Characteristic Initial Value Problem for the Einstein-Yang-Mills-Higgs System in Weighted Sobolev Spaces [J].
Dossa, Marcel ;
Tadmon, Calvin .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2010, (02) :154-231
[9]   The Goursat problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces [J].
Dossa, Marcel ;
Tadmon, Calvin .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) :35-39
[10]   Relativistic magnetohydrodynamics in dynamical spacetimes: Improved electromagnetic gauge condition for adaptive mesh refinement grids [J].
Etienne, Zachariah B. ;
Paschalidis, Vasileios ;
Liu, Yuk Tung ;
Shapiro, Stuart L. .
PHYSICAL REVIEW D, 2012, 85 (02)