Data-driven output feedback optimal control for a class of nonlinear systems via adaptive dynamic programming approach: Part I-Algorithms

被引:0
作者
Wang, Yebin [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
来源
2018 37TH CHINESE CONTROL CONFERENCE (CCC) | 2018年
关键词
ROBOTIC MANIPULATORS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Approximate/adaptive dynamic programming (ADP) has demonstrated great successes in the construction of data-driven output feedback optimal control for linear time-invariant systems and data-driven state feedback optimal control for nonlinear systems. This work investigates data-driven output feedback optimal control design for a class of nonlinear systems. It proposes to parameterize all admissible output feedback optimal control policies over accessible signals (system output and its time derivatives). In the case that system state can be parameterized as functions of accessible signals, then the value function and control policy can be parameterized over accessible signals, which allow ADP to be driven by accessible data. For a special case, where system state, value function and control policy can be linearly parameterized over a finite functional space over accessible signals, the policy iteration algorithm (PI) of ADP is reduced to solve a system of linear equations. Two data-driven PIs are developed to accomplish data-driven output feedback optimal control design. Simulation validates the proposed methodology.
引用
收藏
页码:2926 / 2932
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[2]   Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation [J].
Beard, RW ;
Saridis, GN ;
Wen, JT .
AUTOMATICA, 1997, 33 (12) :2159-2177
[3]  
Bertsekas D. P., 1995, Dynamic programming and optimal control
[4]   Generalized Hamilton-Jacobi-Blellman formulation-based neural network control of affine nonlinear discrete-time systems [J].
Chen, Zheng ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01) :90-106
[5]   Fixed-final-time-constrained optimal control, of Nonlinear systems using neural network HJB approach [J].
Cheng, Tao ;
Lewis, Frank L. ;
Abu-Khalaf, Murad .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06) :1725-1737
[6]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733
[7]   THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS [J].
ELNAGAR, G ;
KAZEMI, MA ;
RAZZAGHI, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) :1793-1796
[8]  
Gao W., 2018, IEEE Transactions on Automatic Control
[9]   Adaptive Dynamic Programming and Adaptive Optimal Output Regulation of Linear Systems [J].
Gao, Weinan ;
Jiang, Zhong-Ping .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (12) :4164-4169
[10]   Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming [J].
Gao, Weinan ;
Jiang, Yu ;
Jiang, Zhong-Ping ;
Chai, Tianyou .
AUTOMATICA, 2016, 72 :37-45