Infinitely many solutions for semilinear elliptic problems with sign-changing weight functions

被引:9
作者
Jalilian, Yaghoub [1 ]
Szulkin, Andrzej [2 ]
机构
[1] Razi Univ, Dept Math, Kermanshah, Iran
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
elliptic problem; sign-changing weight function; infinitely many solutions; positive solution; Nehari manifold; 35J91; 35J20; 47J30; POSITIVE SOLUTIONS; INDEFINITE; EQUATION;
D O I
10.1080/00036811.2013.816687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the elliptic problem {-Delta u + u = a(x)|u|(p-2)u + b(x)|u|(q-2)u, u is an element of H-1 (R-N ), where 2(*) is the critical Sobolev exponent, 2 < p < q < 2(*) and a or b is a sign-changing function. Under different assumptions on a and b we prove the existence of infinitely many solutions to the above problem. We also show that one of these solutions is positive.
引用
收藏
页码:756 / 770
页数:15
相关论文
共 20 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]   Elliptic problems with nonlinearities indefinite in sign [J].
Alama, S ;
Tarantello, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :159-215
[3]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[4]  
Berestycki H., 1995, NODEA-NONLINEAR DIFF, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[5]   A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function [J].
Brown, K. J. ;
Wu, Tsung-Fang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :1326-1336
[6]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[7]   ON EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF CAFFARELLI-KOHN-NIRENBERG TYPE EQUATIONS [J].
Chabrowski, J. ;
Costa, D. G. .
COLLOQUIUM MATHEMATICUM, 2010, 120 (01) :43-62
[8]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726
[9]  
FIGUEIRDO DC, 2003, J FUNCT ANAL, V199, P452
[10]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224