RegiNet: Gradient guided multispectral image registration using convolutional neural networks

被引:14
作者
Wei, Zeming [1 ]
Jung, Cheolkon [1 ]
Su, Chen [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[2] Huawei Technol, Media Engn Lab, Shenzhen 518129, Peoples R China
基金
中国国家自然科学基金;
关键词
Image registration; Convolutional neural network; Deep learning; Multimodal; Multispectral; MUTUAL-INFORMATION;
D O I
10.1016/j.neucom.2020.07.066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multispectral image registration suffers from severe inconsistency between reference and target images. In this paper, we propose gradient guided multispectral image registration using convolutional neural networks, called RegiNet. We build an end-to-end network that directly produces the registration result from the input image pair. We use a gradient map of the reference image to guide the target image for registration. RegiNet first encodes the reference image and the gradient map of the target image separately, and then concatenates them to register the target image. For loss function, we use a structure loss to effectively capture gradient information from the reference image. Experimental results demonstrate that the proposed method successfully produces registration results as well as outperforms state-of-the-art ones in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 32 条
[1]   Non-rigid registration of multi-modal images using both mutual information and cross-correlation [J].
Andronache, A. ;
von Siebenthal, M. ;
Szekely, G. ;
Cattin, Ph. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :3-15
[2]   A SURVEY OF IMAGE REGISTRATION TECHNIQUES [J].
BROWN, LG .
COMPUTING SURVEYS, 1992, 24 (04) :325-376
[3]  
Cardoso MJ, 2017, Deep learning in medical image analysis and multimodal learning for clinical decision support
[4]   Normalized Total Gradient: A New Measure for Multispectral Image Registration [J].
Chen, Shu-Jie ;
Shen, Hui-Liang ;
Li, Chunguang ;
Xin, John H. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) :1297-1310
[5]   A deep learning framework for unsupervised affine and deformable image registration [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Sokooti, Hessam ;
Staring, Marius ;
Isgum, Ivana .
MEDICAL IMAGE ANALYSIS, 2019, 52 :128-143
[6]   End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Staring, Marius ;
Isgum, Ivana .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :204-212
[7]   Soft-Edge Assisted Network for Single Image Super-Resolution [J].
Fang, Faming ;
Li, Juncheng ;
Zeng, Tieyong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :4656-4668
[8]   Matching by Tone Mapping: Photometric Invariant Template Matching [J].
Hel-Or, Yacov ;
Hel-Or, Hagit ;
David, Eyal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (02) :317-330
[9]   Robust multi-sensor image alignment [J].
Irani, M ;
Anandan, P .
SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, :959-966
[10]  
Jaderberg M., ARXIV150602025CSCV