Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites

被引:72
作者
Phan, Duy-Thach [1 ]
Chung, Gwiy-Sang [1 ]
机构
[1] Univ Ulsan, Sch Elect Engn, Ulsan 680749, South Korea
关键词
Pd-graphene nanocomposite; Hydrogen sensor; Pd nanoparticles size; Resistivity sensor; Long-term stability; NANOPARTICLES; OXIDE; PD; SENSORS; PERFORMANCE; FABRICATION; FILMS;
D O I
10.1016/j.ijhydene.2013.08.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the characteristics of resistivity-type hydrogen (H-2) sensors made of palladium (Pd)-graphene nanocomposites. The Pd-graphene composite was synthesized by a simple chemical route capable of large production. Synthesis of Pd nanoparticles (PdNPs) of various sizes decorated on graphene flakes were easily controlled by varying the concentration of Pd precursors. Resistivity H-2 sensors were fabricated from these Pd-graphene composites and evaluated with various concentrations of H-2 and interfering gases at different temperatures. Characteristics for sensitivity, selectivity, response time and operating life were studied. The results from testing the Pd-graphene indicated a potential for hydrogen sensing materials at low temperature with good sensitivity and selectivity. Specifically H-2 was measurable with concentrations ranging from 1 to 1000 ppm in laboratory air, with a very low detection limit of 0.2 ppm. The response of the sensors is almost linear. The resistivity of sensors changed approximately 7% in its resistance with 1000 ppm H-2 even at room temperature. The robust mechanical properties of graphene, which supported these PdNPs, exhibit structural stability and durability in H-2 sensors for at least six months. Moreover, the advantages in this work are experimental reproducibility in synthesis Pd-graphene composite and sensor fabrication process. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:620 / 629
页数:10
相关论文
共 41 条
[1]   Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J].
Al-Mashat, Laith ;
Shin, Koo ;
Kalantar-zadeh, Kourosh ;
Plessis, Johan D. ;
Han, Seung H. ;
Kojima, Robert W. ;
Kaner, Richard B. ;
Li, Dan ;
Gou, Xinglong ;
Ippolito, Samuel J. ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16168-16173
[2]   Room-temperature hydrogen sensor based on palladium nanowires [J].
Atashbar, MZ ;
Banerji, D ;
Singamaneni, S .
IEEE SENSORS JOURNAL, 2005, 5 (05) :792-797
[3]   Recent developments on graphene and graphene oxide based solid state gas sensors [J].
Basu, S. ;
Bhattacharyya, P. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 173 :1-21
[4]   Hydrogen sensing performance of electrodeposited conoidal palladium nanowire and nanotube arrays [J].
Cherevko, Serhiy ;
Kulyk, Nadiia ;
Fu, Jie ;
Chung, Chan-Hwa .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 136 (02) :388-391
[5]  
Chu BH, SENS ACTUATORS B
[6]   Flexible hydrogen sensors using graphene with palladium nanoparticle decoration [J].
Chung, Min Gyun ;
Kim, Dai-Hong ;
Seo, Dong Kyun ;
Kim, Taewoo ;
Im, Hyeong Uk ;
Lee, Hyun Myoung ;
Yoo, Ji-Beom ;
Hong, Seong-Hyeon ;
Kang, Tae June ;
Kim, Yong Hyup .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 169 :387-392
[7]   Highly sensitive NO2 gas sensor based on ozone treated graphene [J].
Chung, Min Gyun ;
Kim, Dai Hong ;
Lee, Hyun Myoung ;
Kim, Taewoo ;
Choi, Jong Ho ;
Seo, Dong Kyun ;
Yoo, Ji-Beom ;
Hong, Seong-Hyeon ;
Kang, Tae June ;
Kim, Yong Hyup .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 166 :172-176
[8]   Few-layer graphene under high pressure: Raman and X-ray diffraction studies [J].
Clark, S. M. ;
Jeon, Ki-Joon ;
Chen, Jing-Yin ;
Yoo, Choong-Shik .
SOLID STATE COMMUNICATIONS, 2013, 154 :15-18
[9]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[10]   Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst [J].
Duy-Thach Phan ;
Chung, Gwiy-Sang .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 161 (01) :341-348