Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials

被引:65
作者
Yang, Jie [1 ]
Zhang, Fubao [2 ]
机构
[1] Huaihua Univ, Dept Math, Huaihua 418008, Hunan, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
Variant fountain theorem; Homoclinic orbits; Super-quadratic; Second-order Hamiltonian systems; EXISTENCE;
D O I
10.1016/j.nonrwa.2008.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of infinitely many homoclinic orbits for some second-order Hamiltonian systerns: ii - L(t)u(t) + del F(t, u(t)) = 0, for all t is an element of R, by the variant fountain Theorem, where F(t, u) satisfies the super-quadratic condition F(t, u)/vertical bar u vertical bar(2) -> infinity as vertical bar u vertical bar -> infinity uniformly in t, and need not satisfy the global Ambrosetti-Rabinowitz condition. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1417 / 1423
页数:7
相关论文
共 10 条
[2]  
FEI G, 2002, J DIFFERENTIAL EQUAT, V8
[3]  
MAWHIN J, 1989, CRITICAL POINT THEOR, V3
[4]   Existence of homoclinic solution for the second order Hamiltonian systems [J].
Ou, ZQ ;
Tang, CL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :203-213
[5]  
RABINOWIT PH, 1986, MINIMAX METHODS CRIT
[6]  
Wu S., 1995, APPL MATH J CHINES B, V10, P399
[7]  
Wu SP, 1998, APPL MATH J CHINES B, V13, P251
[8]   Homoclinic orbits for first order hamiltonian systems possessing super-quadratic potentials [J].
Xu, XJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (02) :197-214
[9]   Variant fountain theorems and their applications [J].
Zou, W .
MANUSCRIPTA MATHEMATICA, 2001, 104 (03) :343-358
[10]   Infinitely many homoclinic orbits for the second-order Hamiltonian systems [J].
Zou, WM ;
Li, SJ .
APPLIED MATHEMATICS LETTERS, 2003, 16 (08) :1283-1287