In North America, more than 70 species of natural enemies are available for pest control, including the aphid predators, Adalia bipunctata L. (two-spotted lady beetle) and Hippodamia convergens Guerin-Meneville (convergent lady beetle), and the generalist predator Chrysoperla cornea Stephens (green lacewing). The two lady beetle species are known to host microsporidian pathogens: Nosema adaliae was originally described from Adalia bipunctata and Tubulinosema hippodamiae from H. convergens. Microsporidia are spore-forming pathogens that typically produce chronic, debilitating disease. Because the spores of both pathogens are transovarially transmitted through beetle eggs, the predation behavior of lacewing larvae provides an opportunity for the transmission of these pathogens when infected lady beetles and lacewings share the same local environment. In this study, uninfected and microsporidia-infected eggs from A. bipunctata and H. convergens were offered to C. cornea larvae. The development of larvae that consumed N. adaliae-infected eggs was not affected, but larval development was prolonged by almost 3 days for those that consumed two or more T. hippodamiae-infected eggs. Prolonged larval development is considered to be costly because larvae remain vulnerable to cannibalization by sibling larvae or other predators. Longevity did not differ significantly between sexes of C. cornea, and the sex ratio of newly eclosed adults did not differ from the previously reported sex ratio of 1 male: 1 female. Upon examination by light microscopy at the end of the trial, two C. carnea larvae were infected with N. adaliae and none were infected with T. hippodamiae, suggesting that T. hippodamiae influenced lacewing larval development without establishing an infection.